
Skip to content

OrderFlow API Documentation

OrderFlow Ltd.

Document Version: 4.2.4

Document Built: 2024-02-16

© OrderFlow Ltd. 2023

This document and its content is copyright of OrderFlow Ltd. All rights reserved.

You may not, except with our express written permission, distribute, publish or commercially exploit the content.

Any reproduction of part or all of the contents in any form is prohibited.

Page 1

Skip to content

Introduction

This document describes the standard XML interfaces used by OrderFlow to support realtime data exchanges with external

systems.

The authoritative version of this document is held in the Realtime Despatch version control system. The document is subject to

continual change; please check the current version with OrderFlow before relying on the contents.

OrderFlow provides a sophisticated XML interface with third party systems, the interface provides the following functionality:

Searchable logs of all incoming and outgoing XML transactions

Event driven triggers and CRON type schedules for XML data exports

Configurable parsing of third party responses to identify application level errors

Automated retrying of failed transactions

OrderFlow also supports the import and export of information in CSV data files, either manually or as part of automated

scheduled processes. The import and export of CSV files is not covered by this document.

Guidelines for API Implementation

The OrderFlow API has been designed around a number of basic assumptions about the way in which data will be exchanged

with external systems. The purpose of these assumptions is to ensure that the interfaces are resilient in the event of system

downtime and network failure. All integrators that use the OrderFlow API should design their implementations with these

assumptions in mind.

System Availability

OrderFlow does not assume that external systems with which it communicates will always be available.

Similarly, implementation of the operations described in this document should make allowance for the possibility that OrderFlow

will have short periods of downtime.

Receipt of Message Retries

For outgoing messages to third party systems OrderFlow has a retry mechanism to handle the situation in which message

delivery cannot be confirmed within a specified time.

Messages that exceed the maximum number of retries are brought to the attention of an administrator who is responsible for

assessing the business impact of the repeated failure and taking appropriate action.

The number of retries and the delay between each retry is designed to ensure that when an external system is slow to respond,

OrderFlow does not immediately increase the load placed upon the external system by retrying too rapidly or too frequently.

•

•

•

•

Introduction

© OrderFlow Ltd. 2023 Page 2

Skip to content

Sending of Message Retries

Similarly, in order to ensure business continuity in the event of system downtime, third party systems interfacing with OrderFlow

should include a mechanism for retrying messages which could not be delivered following the period of inavailability.

The recommended strategy is to retry delivery of messages at specified intervals. As with delivery from OrderFlow, if the

message cannot be delivered after a configured number of retries, a mechanism should be in place which allows the third party

system to alert the system administrator of this situation.

Order of Message Delivery

OrderFlow does not assume that incoming messages will always be received in the same order in which they were sent. Similarly,

the use of message retries from OrderFlow means that the order of message delivery to third party systems cannot be

guaranteed in every case.

Where the API contains information that allows the receiving system to identify that the data contained within a message has

been made obsolete by a subsequent message, this obsolete message should be ignored. The OrderFlow to external system

messages described in the section Operations FROM OrderFlow (PUSH) include a message id in each outgoing message, which

can be used to determine the sequencing order of messages.

Idempotency

Third party systems which receive and trigger actions on the basis of notifications received from OrderFlow should be

idempotent, in the sense that a second request to trigger an action that has already been completed should be ignored when

appropriate.

The necessity for idempotent messages arises as a result of the retry mechanism. If a retry is triggered because a previous

attempt to deliver a message timed out, the receiving system should be able to detect whether the retry message had in fact

been received on the first attempt. It should not attempt to retry the action without taking into account the possibility that the

action may have already been completed.

HTTP Authentication

The XML interface is password protected using HTTP BASIC authentication and/or custom authentication.

HTTP Basic Authentication

Implemented as described in RFC 2617 and on Wikipedia. Note that the security realm is "RTD", if this is required by the HTTP

client. Custom Authentication is supported through the user and password which should be transferred using the HTTP request

headers (user and password, respectively). The password should be base64 encoded. In both cases, communication is assumed

to be via HTTPS, without which the security of these authentication schemes would be inadequate.

Channel and Organisation Authentication

In most environments it is necessary to authenticate a user by channel. For example, one channel might represent orders

associated with a particular retailer from a shopping cart backed web site, and another might represent orders coming from that

retailer's Amazon site. In order to facilitate channel authentication, the channel code needs to be passed to OrderFlow in all

requests.

HTTP Authentication

© OrderFlow Ltd. 2023 Page 3

http://tools.ietf.org/html/rfc2617
http://en.wikipedia.org/wiki/Basic_access_authentication

Skip to content

On OrderFlow, a channel will belong to an organisation. For this reason for some operations it is necessary to be authenticated at

the organisation level.

For HTTP POST operations which involve posting a request body rather than a www-urlencoded form, the recommended usage is

to pass the channel using a HTTP header named channel , and to pass in the organisation using a header named organisation .

For HTTP GET operations, the same mechanism is available, although it is also possible to pass the channel and organisation via

HTTP request parameters in the query string itself. Note that if the channel or organisation is supplied both as request

parameters and as headers, then the values will be taken from the respective request parameters.

Message Conventions

URL: The form of a URL used to connect to OrderFlow is shown below:

https://[host]/[instanceName]/[moduleName]/[messageName].xml

The host is the HTTPS URL associated with the server on which the OrderFlow application is running.

The instancename is simply the particular instance of OrderFlow on the host, and will be environment-specific.

The moduleName is the qualifier which points to the part of the application in which the functionality lies.

The messageName is the name of the particular message, and may consist of more than one segment (e.g. for imports, all URLs

end with .xml).

From this point onwards only the last part of the URL is shown, from the module name onwards: /remoteorder/imports/

importitems.xml

The first part of the URL will be specific to the instance of OrderFlow being addressed.

Capitalization: applies to both URLs as well as the contents of the messages themselves, that is, both elements and attributes.

First letter always begins with lower case.

After this, camel case is used. Each new word which is part of the same identifier starts with an upper case letter.

Hyphens and underscores are not used in XML elements or attributes. For example, and element containing the last

modified date would be named lastModifiedDate rather than last-modified-date .

HTTP Operation types

PULL

PULL operations are invoked by the third party application (the client) on service interfaces published by OrderFlow.

These can be invoked by remote clients to OrderFlow. OrderFlow provides the endpoints to PULL operations.

See the Operations TO OrderFlow (PULL).

•

•

•

Message Conventions

© OrderFlow Ltd. 2023 Page 4

Skip to content

PUSH

PUSH operations are invoked by OrderFlow to push data to the third party application (the client), typically an e-commerce

shopping cart application or accounts system.

For PUSH operations OrderFlow functions as the client in the interaction.

Push notifications can either be realtime or scheduled, or can be triggered by events on OrderFlow. For scheduled notifications,

URLs and invocation schedule are configured per organisation or per channel for operation type.

The operations will involve notifications over a given period. The receiver is expected to either accept or reject the notification. If

rejected, or if the notification target server is not available, then the same notifications will be attempted at the next notification

schedule time. Push operation which involve posting of data are considered to have succeeded if the target server returns an

error code of 200 or if the content of the acknowledgement returned by the client matches the rules defined in the remote

message definition.

As OrderFlow is not responsible for defining and hosting PUSH operations, the API operations as described below will only

be applicable in certain circumstances. Specifically, developers can use this guide as a basis for implementing extensions

to third party systems that interface with OrderFlow.

OrderFlow is also able to integrate using pre-existing APIs defined by other third party applications through a configurable

integration framework. The details for this kind of integration are not described here. The current document covers only the

'generic integration' for PUSH operations.

A note on existing third party APIs

HTTP Operation types

© OrderFlow Ltd. 2023 Page 5

Skip to content
Operations TO OrderFlow (PULL)

Import Operations

Product Import

A mechanism for adding new products into the OrderFlow database, and for updating existing products (keyed on product code).

Products should first be defined within the third party application. The process that allows a user to create a new product should

always associate it with a mandatory unique SKU (e.g. each size colour combination must have it's own SKU code).

"Bundles" of SKUs that might be represented in the third party system by a unique "Parent" SKU should not be passed to

OrderFlow. The SKUs sent to OrderFlow should be the individual products rather than logical groupings of items which might be

received and stored separately.

"Virtual" products that are not associated with physical items of stock in the warehouse should not be sent to OrderFlow.

When a new SKU is created within the third party system the SKU code, description and (optionally) any other relevant details

should be passed to OrderFlow via the XML interface. The OrderFlow system should then create a new product code for the

retailer (sales channel) and return an XML confirmation. The SKU code should be unique to the retailer, if the 'shared' flag is set

as part of the product creation process the SKU code should be unique across the OrderFlow system.

Note that multi-line properties can be supported: simply use the string [BR] to represent line breaks.

The value for the organisation HTTP header above will be the reference on OrderFlow for the organisation to which the product

will belong. An example request body for the Product Import operation invocation is shown below.

Operation Summary

Invocation Called from client to OrderFlow as required

Method HTTP POST

URL /remotewarehouse/imports/importitems.xml

Header organisation

<imports>

 <import type="product" operation="insert" externalReference="TEST_fullproduct">

 externalReference=TEST_fullproduct

 description=A description for the test product

 weight=100

 weightUnits=grams

 imageReference=TEST_fullproduct.gif

 type=default

 quantityOnOrder=10

 priceNet=10.50

 priceGross=11.50

 tax=1.50

 taxCode=T1

 currency=GBP

Operations TO OrderFlow (PULL)

© OrderFlow Ltd. 2023 Page 6

Skip to content

For a successful product import, OrderFlow will return output as shown below.

Note that failures are recorded per imported item. This happens when the data cannot be imported for some reason, for example

if the imported item refers to data which is not present on the system.

The system also identifies and rejects duplicates when an attempt is made to reimport data which is already on the system.

Similarly to failures, duplicates are also recorded separately using an importDuplicates element.

 currencyUnits=pounds

 costNet=10.50

 costGross=11.50

 costTax=1.50

 costTaxCode=T1

 costCurrency=GBP

 costCurrencyUnits=pounds

 userDefined1=User defined field value 1

 userDefined2=

 userDefined3=

 userDefined4=

 userDefined5=

 channel=MYCHANNEL

 type=default

 activated=true

 </import>

 <import type="product" operation="insert" externalReference="TEST_min_product">

 externalReference=TEST_min_product

 description=A description for the min product

 organisation=supershop

 type=default

 activated=true

 </import>

 <import type="product" operation="insert" externalReference="TEST_global_product">

 externalReference=TEST_global_product

 description=A description for the global product

 type=default

 activated=true

 </import>

</imports>

<importResult>

 <importSuccesses>

 <import type="product" operation="insert" externalReference="TEST_fullproduct"

 entity="rtd.domain.database.Product" item="rtd.domain.database.Product@172c384b"

 queryTime="2014-08-02 12:20:33.575" />

 <import type="product" operation="insert" externalReference="TEST_min_product"

 entity="rtd.domain.database.Product" item="rtd.domain.database.Product@c4983d8"

 queryTime="2014-08-02 12:20:33.596" />

 <import type="product" operation="insert" externalReference="TEST_global_product"

 entity="rtd.domain.database.Product" item="rtd.domain.database.Product@629bfaff"

 queryTime="2014-08-02 12:20:33.617" />

 </importSuccesses>

 <importFailures>

 </importFailures>

</importResult>

<importResult>

 <importSuccesses>

 </importSuccesses>

 <importFailures>

 <import type="product" operation="insert" externalReference="TEST_fullprosduct"

 queryTime="2014-08-02 12:31:35.582">

 <failureMessage>Unable to find

 any entity associated with identifier:

 ref:channel:missing_channel</failureMessage>

 <failureDetail>Unable to find any entity associated

 with identifier: ref:channel:missing_channel

Import Operations

© OrderFlow Ltd. 2023 Page 7

Skip to content

Note that temporary products can be imported directly using the Order Import operation. However, using this operation it is only

possible to specify the product code (external reference) and the description.

See Product Import Fields for more details on fields which can be used for this operation.

Product Update

If a product description or other details are edited in the third party application, the new description or other values should be

passed to OrderFlow using the Product Update operation.

The format of the message is the same as the product import but OrderFlow will apply a product update rather than an insert.

 (rtd.exceptions.ImportMissingDataException)

 ...</failureDetail>

 </import>

 </importFailures>

 <importDuplicates>

 <import type="product" operation="insert" externalReference="TEST_min_product"

 queryTime="2014-08-02 12:31:35.717">

 <duplicateMessage>An instance

 of product with reference

 'TEST_min_product' is already present in

 the database.</duplicateMessage>

 <duplicateDetail>An

 instance of product with reference

 'TEST_min_product' is already present in

 the database.

 (rtd.exceptions.ValidationErrorException)

 ...</duplicateDetail>

 </import>

 <import type="product" operation="insert" externalReference="TEST_global_product"

 queryTime="2014-08-02

 12:31:35.784">

 <duplicateMessage>An instance

 of product with reference

 'TEST_global_product' is already present in

 the database.</duplicateMessage>

 <duplicateDetail>An

 instance of product with reference

 'TEST_global_product' is already present in

 the database.

 (rtd.exceptions.ValidationErrorException)

 ...</duplicateDetail>

 </import>

 </importDuplicates>

</importResult>

Operation Summary

Invocation Called from client to OrderFlow as required

Method HTTP POST

URL /remotewarehouse/imports/importitems.xml

Header organisation

Import Operations

© OrderFlow Ltd. 2023 Page 8

Skip to content

The value for the organisation HTTP header will be the reference on OrderFlow for the organisation to which the product

belongs.

The Product Update will make a request very similar to that of the Product Import, the key difference being the operation

attribute.

See Product Import Fields for more details on fields which can be used for this operation.

Order Import

The order import defines a mechanism for importing orders supplied as an XML document. The structure of the invocation is

identical to the Product Import described earlier. All that differs is the URL used, and the contents of XML posted to the

OrderFlow server.

The value for the channel HTTP header will be the reference on OrderFlow for the sales channel for the incoming order.

An example of a minimal Order Import input is shown below:

<?xml version="1.0" encoding="UTF8"?>

<imports>

 <import type="product" operation="update" externalReference="TEST_fullproduct">

 externalReference=TEST_fullproduct

 description=An updated description for the test product

 weight=250

 </import>

</imports>

Operation Summary

Invocation Called from client to OrderFlow as required

Method HTTP POST

URL /remoteorder/imports/importitems.xml

Header channel

<?xml version="1.0" encoding="UTF8"?>

<imports>

 <import type="order" operation="insert" externalReference="TEST_order1">

 state=created

 validated=true

 paymentTransactionInfo=999

 customerComment=A comment from the customer

 totalPriceNet=10.0

 totalPriceGross=12.0

 totalTax=2.0

 totalTaxCode=T1

 shippingPriceNet=2.5

 shippingPriceGross=2.0

 shippingTax=2.0

 shippingTaxCode=T1

 currency=GBP

 currencyUnits=pounds

 placed=2014-08-31 07:16:02

Import Operations

© OrderFlow Ltd. 2023 Page 9

Skip to content

 authorised=2014-08-31 08:16:10

 source=ebay

 channel=MYCHANNEL

 campaign=campaign_reference

 deliveryAddressLine1=Granvilla

 deliveryAddressLine2=Melton Hill

 deliveryAddressLine3=Woodbridge

 deliveryAddressLine4=Suffolk

 deliveryAddressLine5=

 deliveryAddressLine6=

 deliveryCountryCode=UK

 deliveryPostCode=IP12 1AX

 deliveryContactName=Phil Zoio

 deliveryEmailAddress=phil@orderflow-wms.co.uk

 deliveryDayPhoneNumber=01394 384181

 deliveryEveningPhoneNumber=01394 385000

 deliveryMobilePhoneNumber=07595 524200

 deliveryFaxNumber=01394 384181

 deliveryCompanyName=OrderFlow

 invoiceAddressLine1=OrderFlow

 invoiceAddressLine2=2 Manor Cottages

 invoiceAddressLine3=Swindon Road

 invoiceAddressLine4=Kington Langley

 invoiceAddressLine5=Chippenham

 invoiceAddressLine6=Wiltshire

 invoiceCountryCode=UK

 invoicePostCode=SN15 5ND

 invoiceContactName=Charlie Armor

 invoiceEmailAddress=charlie@orderflow-wms.co.uk

 invoiceDayPhoneNumber=01249 750564

 invoiceEveningPhoneNumber=01249 750564

 invoiceMobilePhoneNumber=

 invoiceFaxNumber=01249 750564

 invoiceCompanyName=OrderFlow

 userDefined1=ud1

 userDefined2=ud2

 userDefined3=ud3

 userDefined4=ud4

 userDefined5=ud5

 shipment.externalReference=TEST_myref_1

 shipment.state=ready

 shipment.earliestShipDate=1999-12-31

 shipment.deliveryInstruction=Please leave with neighbour if nobody at home

 shipment.despatchComment=

 shipment.despatchReference=

 shipment.weight=120

 shipment.weightUnits=grams

 shipment.itemCount=1

 shipment.addressLine1=

 shipment.addressLine2=

 shipment.addressLine3=

 shipment.addressLine4=

 shipment.addressLine5=

 shipment.addressLine6=

 shipment.countryCode=

 shipment.postCode=

 shipment.contactName=

 shipment.emailAddress=

 shipment.dayPhoneNumber=

 shipment.eveningPhoneNumber=

 shipment.mobilePhoneNumber=

 shipment.faxNumber=

 shipment.companyName=

 shipment.userDefined1=

 shipment.userDefined2=

 shipment.userDefined3=

 shipment.userDefined4=

 shipment.userDefined5=

 shipment.deliverySuggestionCode=express

 shipment.deliverySuggestionName=Express

Import Operations

© OrderFlow Ltd. 2023 Page 10

Skip to content

In general, the operation used for order imports will be insert . It is not possible to use the API to selectively update parts of an

order (using the update operation). However, from OrderFlow 4.3.3 it is possible to use the reinsert to cancel (if necessary) an

existing order and reinsert a new order with the same reference. Note that when this operation is used, if the order cannot be

cancelled, then the import will be rejected and the order will be left unchanged.

 shipment.orderItem=entity:order

 orderLine.1.product.externalReference=DVD-BELOVED

 orderLine.1.quantity=10

 orderLine.1.state=created

 orderLine.1.totalPriceNet=4.0

 orderLine.1.totalPriceGross=5.0

 orderLine.1.totalTax=1.0

 orderLine.1.totalTaxCode=T1

 orderLine.1.unitPriceNet=

 orderLine.1.unitPriceGross=

 orderLine.1.unitTax=

 orderLine.1.unitTaxCode=

 orderLine.1.userDefined1=

 orderLine.1.userDefined2=

 orderLine.1.userDefined3=

 orderLine.1.userDefined4=

 orderLine.1.userDefined5=

 orderLine.2.product.externalReference=DVD-MATR

 orderLine.2.quantity=20

 orderLine.2.state=created

 orderLine.2.totalPriceNet=6.0

 orderLine.2.totalPriceGross=7.0

 orderLine.2.totalTax=1.0

 orderLine.2.totalTaxCode=T2

 orderLine.2.unitPriceNet=

 orderLine.2.unitPriceGross=

 orderLine.2.unitTax=

 orderLine.2.unitTaxCode=

 orderLine.2.userDefined1=

 orderLine.2.userDefined2=

 orderLine.2.userDefined3=

 orderLine.2.userDefined4=

 orderLine.2.userDefined5=

 orderLine.1.shipment=entity:shipment

 orderLine.2.shipment=entity:shipment

 orderAttribute.1.name=TEST_att1

 orderAttribute.1.title=Attribute 1

 orderAttribute.1.value=Attribute Value 1

 orderAttribute.1.orderItem=entity:order

 orderAttribute.2.name=TEST_att2

 orderAttribute.2.title=Attribute 2

 orderAttribute.2.value=Attribute Value 2

 orderAttribute.2.orderItem=entity:order

 </import>

 <import type="order" operation="insert" externalReference="TEST_minorder">

 #additional order properties as above

 ...

 </import>

 <import type="order" operation="insert" externalReference="TEST_with_product">

 #additional order properties as above

 ...

 </import>

</imports>

Import Operations

© OrderFlow Ltd. 2023 Page 11

Skip to content

Note also that campaign is an optional field (introduced in 3.8.0) which can be used to associate the incoming purchase order

with an existing campaign.

See Order Import Fields for more details on fields which can be used for this operation.

Example Output: As with Product Import.

REFERRING TO PRODUCTS

Note that arbitrary order attributes can be imported using name value pairs as shown in the example above.

As the above example shows, there are two ways of referring to products. One is to refer to existing products within the system,

using a line such as

orderLine.1.product.externalReference=DVD-BELOVED

The other is to import products as part of the order import, as shown in the snippet below.

Note that products need to be given a type attribute. For products which are only temporary, that is, for which no stock is to be

checked into the warehouse, the type entry might be written as:

product.1.type=temporary

The range of properties available for the product entries is the same as is available for the standalone product import. However,

the imported product must also have the product (and possibly numbered index) prefix, as the default imported entity in this case

is order, not product.

line items are indexed, as shown for example in the expression

orderLine.1.quantity=10

Note that the referenced products, delivery codes, packing options, etc. need to be present and active in the database for the

import to work successfully.

As with products, if multiple orders are imported, it is possible for some to import successfully and others to fail import. Again as

with products, errors for particular items are specified using the importFailures element.

Note that multi-line properties can be supported: simply use the string [BR] to represent line breaks.

MERGING ORDERS WITH PRODUCT DEFINITIONS

It is possible to merge existing product definitions using the Order Import operation. This is useful in the case where the products

may or may not be known about at the time of order import. In this case, the merge operation should be used for the order

import, as shown below.

product.1.externalReference=TEST_orderproduct1

product.1.description=A description for the new product 1

product.1.type=default

product.1.activated=true

orderLine.1.product=entity:product.1

<?xml version="1.0" encoding="UTF8"?>

<imports>

 <import type="order" operation="merge" externalReference="TEST_myref">

 ...

Import Operations

© OrderFlow Ltd. 2023 Page 12

Skip to content

In the example above, the product 'TEST_orderproduct1' may or may not be known to OrderFlow at the time of order import.

Note that orders and their associated order lines and shipments cannot be updated using the merge operation.

Supplier Purchase Order Import

The Supplier Purchase Order allows incoming deliveries to be associated with the purchase order that was used to order the

incoming stock from a supplier. Multiple deliveries may be associated with one purchase order.

The value for the organisation HTTP header will be the reference on OrderFlow for the organisation to which the purchase order

applies.

OrderFlow can be configured to return details of incoming deliveries to the external system from which the associated supplier

purchase order was received.

The following optional restrictions can be enforced by the OrderFlow configuration if appropriate:

Incoming deliveries that have been associated with a supplier purchase order can be restricted to the products contained in

the order.

Incoming deliveries that have been associated with a supplier purchase order can be restricted to the product quantities

contained in the order.

Supplier purchase orders associated with suppliers not already defined within OrderFlow can automatically create a new

supplier definition.

Example input is shown below.

 product.1.externalReference=TEST_orderproduct1

 product.1.description=A description for the new product 1

 product.1.type=temporary

 product.1.activated=true

 ...

 </import>

</imports>

Operation Summary

Invocation From 3rd party system to OrderFlow

Method HTTP POST

URL /remotewarehouse/imports/importitems.xml

Header organisation

•

•

•

<?xml version="1.0" encoding="UTF8"?>

<imports>

 <import type="purchaseOrder" operation="insert"

 externalReference="TEST_po">

 purchaseOrder.supplierReference=TEST_purchaseOrder

 purchaseOrder.supplier=HAMA

 purchaseOrder.site=WAREHOUSE_1

 purchaseOrder.campaign=TEST_campaign_reference

Import Operations

© OrderFlow Ltd. 2023 Page 13

Skip to content

Note that supplier purchase orders can also be imported as CSV documents through the CSV import interface. In this case, the

document is not restricted to using the native format above.

Note that site is an optional field which is only applicable in multi-warehouse environments when the target site for the

purchase order is known prior at the point of placing the purchase order. For single warehouse environments, the default site or

warehouse will be used automatically.

Note that campaign is an optional field (introduced in 3.8.0) which can be used to associate the incoming purchase order with an

existing campaign.

Advanced Shipping Note (ASN) Import

The Advanced Shipping Note (ASN) defines a mechanism by which incoming deliveries can be associated with existing orders.

This provides the opportunity to avoid the overhead of checking stock into the warehouse, as items contained within an ASN

delivery can be fed directly into order processing. Two types of ASNs are supported: Just-in-time ASNs, for which the individuals

lines are associated with orders to be processed at the time of delivery, and Stock ASNs, for which the delivered items will be

checked into the warehouse.

The value for the organisation HTTP header will be the reference on OrderFlow for the organisation to which the ASN applies.

The format of the ASN import is very similar to that of the product and order import. The differences lie in the content of the data.

The example below is for a stock ASN, for which the associated delivery contents are expected to be placed in stock.

 purchaseOrderLine.1.product=DVD-ABUG

 purchaseOrderLine.1.quantity=1

 purchaseOrderLine.1.purchaseOrder=purchaseOrder

 purchaseOrderLine.1.externalReference=poLine1

 purchaseOrderLine.2.product=DVD-FRAN

 purchaseOrderLine.2.quantity=1

 purchaseOrderLine.2.purchaseOrder=purchaseOrder

 purchaseOrderLine.2.externalReference=poLine2

 </import>

</imports>

Operation Summary

Invocation From 3rd party system to OrderFlow

Method HTTP POST

URL /remotewarehouse/imports/importitems.xml

Header organisation

<?xml version="1.0" encoding="UTF8"?>

<imports>

 <import type="asn" operation="insert">

 asn.supplierReference=TEST_asn

 asn.supplier=abdc

 asn.site=WAREHOUSE_1

Import Operations

© OrderFlow Ltd. 2023 Page 14

Skip to content

The example below is for a Just-in-Time ASN, for which the associated delivery contents are expected to be associated with

outstanding orders through a cross docking process.

The third party system is responsible for providing the supplier reference for the ASN. The combination of supplier and supplier

reference needs to be unique within OrderFlow. The supplier field itself is optional.

Note that the orderItem attribute used in the Just-in-Time ASN refers to the order which is identified using the

externalReference attribute in the Order Import operation.

The following additional assumptions underlie the advance shipping note functionality. Some of these assumptions may be

relaxed in future releases of OrderFlow:

At the time when the ASN is received by OrderFlow, all of the products associated with the ASN will already be known to

OrderFlow. This may either be through a Product Import_, or implicitly via an Order Import.

If the ASN is for just-in-time orders, then all of the orders will be known to OrderFlow.

For a single ASN, all the lines will either be purely for just-in-time orders, or purely for stock check-in. In other words, the ASN

will not contain a mixture of just-in-time and stock products.

For any order that the ASN covers, it should include in the same ASN the items required to satisfy all of the line items in that

order. It should not, for example, be necessary to retrieve product items from stock to process an order contained within the

ASN.

Orders referred to using ASNs cannot have multiple line items using the same SKU/product code.

The ASN is only supported for single shipment orders.

The ASN will be received electronically prior to the physical delivery of the items.

Note that the site is only required in multi-warehouse environments. For single warehouse environments, the default site or

warehouse will be used automatically.

When receiving the ASN, OrderFlow will make sure the above conditions are satisfied, and in doing so will determine to which

order lines each of the ASN line entries should be applied.

 asnLine.1.product=DVD-BELOVED

 asnLine.1.quantity=10

 asnLine.1.advancedShippingNote=asn

 asnLine.2.product=DVD-UNSG

 asnLine.2.quantity=20

 asnLine.2.advancedShippingNote=asn

 </import>

</imports>

<?xml version="1.0" encoding="UTF8"?>

<imports>

 <import type="asn" operation="insert">

 asn.supplierReference=TEST_asn

 asn.supplier=abdc

 asn.site=WAREHOUSE_1

 asnLine.1.product=DVD-BELOVED

 asnLine.1.quantity=10

 asnLine.1.advancedShippingNote=asn

 asnLine.1.orderItem=100

 asnLine.2.product=DVD-UNSG

 asnLine.2.quantity=20

 asnLine.2.advancedShippingNote=asn

 asnLine.2.orderItem=100

 </import>

</imports>

•

•

•

•

•

•

•

Import Operations

© OrderFlow Ltd. 2023 Page 15

Skip to content

Note on the physical processing of the ASN

The note that follows is not part of the XML interface, but gives some background to how the contents of the ASN document will

be used.

When the goods are received, the paperwork which accompanies the physical delivery should contain the ASN reference, as in

the example below.

For each ASN line item, the product code will be inputted or scanned in for each item in the delivery. For just-in-time ASNs, when

all of the lines associated with a particular order have been received, the user is directed to the packing screen for that order.

Returns Import

The Return Item import defines a mechanism for importing customer returns remotely, for example, via a Point of Sale (PoS)

system. Multiple Return Lines may be associated with a Return Item.

The value for the organisation HTTP header will be the reference on OrderFlow for the organisation to which the return applies.

The example below is for a Return Item with two Return Lines:

ASN: ASN_BARCODE

prod1 (The description for prod1)

 Quantity: 10

prod2 (The description for prod2)

 Quantity: 2

prod1 (The description for prod1)

 Quantity: 4

prod3 (The description for prod3)

 Quantity: 1

Operation Summary

Invocation From 3rd party system to OrderFlow

Method HTTP POST

URL /remotewarehouse/imports/importitems.xml

Header organisation

<?xml version="1.0" encoding="UTF8"?>

<imports>

<import type="return" operation="insert">

 return.orderReference=order_reference

 return.authorisation=TEST_return

 return.authorised=true

 return.type=goods_not_delivered

 return.storeId=001

 return.returnDate=2015-01-21 16:35:17

 return.user=philz

 return.organisation=myco

 return.site=WAREHOUSE_1

 return.note=Customer did not like colour

 #The line below is optional

Import Operations

© OrderFlow Ltd. 2023 Page 16

Skip to content

Common elements such as product and channel follow the standard OrderFlow API conventions. Some additional detail on the

XML Return Item and Line fields:

orderReference: The order number that this Return refers to.

authorisation: Either the authorisation reference or order number (depending on OrderFlow configuration). Must have a value

if no orderReference is specified.

authorised: Whether the return is authorised.

type: The type of the return (e.g. 'goods_not_delivered', 'goods_damaged', 'unknown'). Note that this is configurable.

storeId: The ID of the store from which the return is being made.

note: Note to be added to return.

reason: Reason for the return, for example one of: [A - Not wanted, B - Not as described, C - Wrong size, D - Wrong product

sent, E - Quality/Manufacturing fault, F - Damaged in transit, G - Late arrival, H - Other]. Note that this is configurable.

condition: Condition of the item(s) being returned, for example one of: [As new, Packaging damaged, Product damaged

(refurbishable), Product damaged (irreparable)]. Note that this is configurable.

Note that the site is only required in multi-warehouse environments. For single warehouse environments, the default site or

warehouse will be used automatically.

Campaign Import

The Campaign import defines a mechanism for importing campaigns remotely. Multiple Campaign Lines can be associated with

a Campaign, and multiple Campaigns can be defined in a single import. Campaigns are only present in OrderFlow from version

3.7.9.

 #return.channel=MYCHANNEL

 returnLine.1.quantity=1

 returnLine.1.reason=A - Not wanted

 returnLine.1.condition=As new

 returnLine.1.product=DVD-BELOVED

 returnLine.1.returnItem=return

 returnLine.2.quantity=1

 returnLine.2.reason= B - Not as described

 returnLine.2.condition=Packaging damaged

 returnLine.2.product=DVD-FRAN

 returnLine.2.returnItem=return

</import>

</imports>

•

•

•

•

•

•

•

•

Operation Summary

Invocation From 3rd party system to OrderFlow

Method HTTP POST

URL /remotewarehouse/imports/importitems.xml

Header channel

Import Operations

© OrderFlow Ltd. 2023 Page 17

Skip to content

The value for the channel HTTP header will be the reference on OrderFlow for the sales channel to which the campaign will

belong.

The example below is for a Campaign with two Campaign Lines:

Common elements such as product and channel follow the standard OrderFlow API conventions. Some additional detail on the

XML Campaign fields:

startDate: The 'scheduled' start date of the campaign, when it effectively becomes active.

breakDate: The 'scheduled' date by which the primary activity on the campaign needs to be completed. SLAs can be

measured against this date.

endDate: The date at which the campaign needs to be terminated.

Stock Move Task Import

The Stock Move Task import provides a mechanism for a third party system to initiate a sequence of stock moves within

OrderFlow.

The stock moves may be for a variety of purposes. For example, they may involve the transfer of damaged stock from quarantine

to outgoing locations prior to being returned to a supplier. In another example, the stock moves may entail the movement of

items within an eCommerce warehouse to outgoing locations for subsequent shipment to stores.

<?xml version="1.0" encoding="UTF8"?>

<imports>

<import type="campaign" operation="insert" externalReference="campaign_reference">

 externalReference=campaign_reference

 name=campaign_name

 description=TEST campaign description

 channel=acmeweb

 startDate=2017-06-20

 breakDate=2017-06-24

 endDate=2017-06-25

 state=created

 campaignLine.1.quantity=5

 campaignLine.1.product.externalReference=ipod5

 campaignLine.1.campaign=entity:campaign

 campaignLine.2.quantity=2

 campaignLine.2.product.externalReference=star_wars_4

 campaignLine.2.campaign=entity:campaign

</import>

</imports>

•

•

•

Operation Summary

Invocation From 3rd party system to OrderFlow

Method HTTP POST

URL /remotewarehouse/imports/importitems.xml

Header organisation

Import Operations

© OrderFlow Ltd. 2023 Page 18

Skip to content

The value for the organisation HTTP header will be the reference on OrderFlow for the organisation to which the products

reference in the task belong.

The example below shows a third party task import to return some damaged stock to a supplier.

And this example shows a third party task import to transfer stock to a different warehouse.

The following assumptions underlie the stock move task import functionality. Some of these assumptions may be relaxed in

future releases of OrderFlow:

The third party system is responsible for providing its corresponding task reference (externalReference).

At the time when the task is received by OrderFlow, all of the products associated with the task will already be known to

OrderFlow. This may be either through a Product Import_, or implicitly via an Order Import.

Note that the site is only required in multi-warehouse environments. For single warehouse environments, the default site or

warehouse will be used automatically.

The taskDefinition determines how the system treats the lines once they have been imported. This is explained in a bit more

detail in the next section.

Note on the processing of the imported task

The note that follows is not part of the XML interface, but gives some background to how the imported task will be actioned on

OrderFlow.

<?xml version="1.0" encoding="UTF8"?>

<imports>

<import type="stockMoveTask" operation="insert">

externalReference=Widgets_RTN037625

taskDefinition=return_damaged_to_supplier

supplier=WidgetsRUs

site=Default

stockMoveLine.1.product=DVD-MATR

stockMoveLine.1.suggestedQuantity=1

stockMoveLine.1.thirdPartyReference=037625-01

stockMoveLine.1.stockMoveTask=stockMoveTask

stockMoveLine.2.product=DVD-ABUG

stockMoveLine.2.suggestedQuantity=2

stockMoveLine.2.thirdPartyReference=037625-02

stockMoveLine.2.stockMoveTask=stockMoveTask

</import>

</imports>

<?xml version="1.0" encoding="UTF8"?>

<imports>

<import type="stockMoveTask" operation="insert">

externalReference=Calais_095441

taskDefinition=outgoing_stock_transfer

site=Default

targetSite=Calais

stockMoveLine.1.product=DVD-MATR

stockMoveLine.1.suggestedQuantity=1

stockMoveLine.1.thirdPartyReference=095441-01

stockMoveLine.1.stockMoveTask=stockMoveTask

stockMoveLine.2.product=DVD-ABUG

stockMoveLine.2.suggestedQuantity=2

stockMoveLine.2.thirdPartyReference=095441-01

stockMoveLine.2.stockMoveTask=stockMoveTask

</import>

</imports>

•

•

Import Operations

© OrderFlow Ltd. 2023 Page 19

Skip to content

When the task is imported, OrderFlow will create a stock move task of the relevant type, and capture the required lines

(supplied in the XML) for that task. A background job will then run that will match the required lines for each imported task with

the appropriate source (picking) and target (putaway) locations, thereby creating the source and target lines for the task.

Once the source and target lines have been identified, OrderFlow marks the stock move task as ready , allowing it to be

processed in the same way as other stock move tasks on the system.

Imports using Custom Formats

The imports described above all assume that the native OrderFlow format is used. OrderFlow also support the import of data via

other text based formats. For example, it is possible to support imports of data supplied as CSV files. Custom XML-based data

formats can be accommodated using an XSLT transformation. Indeed, almost any text based format can be accommodated.

Note that the 'magic' that takes place is in the setup of the handler, which needs to be correctly identified for the incoming data.

Different handlers will be configured in different ways, depending on the format of the incoming data. For example, if the

incoming format is CSV, the input handler may define mappings from the source fields generated by the third party system to the

target fields understood by OrderFlow. The details of how the input handler is configured is outside of the scope of this

document.

Note that the organisation scope of the operation above is determined using the organisation and/or channel header or

parameters supplied as described in the Authentication section.

Operation Summary

Invocation Called from client to OrderFlow as required

Method HTTP POST

Example URL /remoteorder/imports/transformitems.xml

Parameters content: the content of the document being imported. handler:used to identify the transformation to be

applied on the incoming data. operation:indicates the operation to be applied. Only required in

situations where the operation is not already specified within the incoming document. If supplied, the

value needs to be insert , update or merge .

Import Operations

© OrderFlow Ltd. 2023 Page 20

Skip to content
Product Operations

Inventory Pull

Third party applications can check the inventory level of a single product or set of products within OrderFlow. The SKU codes and

"available stock" figures are returned. Depending on the filters used, this operation can return the inventory level for just a single

product, a particular set of products or for all products in the inventory for a particular retailer.

Note that in the use of the 'from' parameter, the date formats should be used as follows:

yyyy-MM-dd HH:mm:ss : use this to query within a specified time interval yyyy-MM-dd : use this to query within specified date

interval

The Inventory Pull operation will result in OrderFlow returning output as shown below.

As indicated using ... , additional fields have been added to the inventory output. As with 4.0.3, these include:

The key figure is the available quantity, which will be zero or negative where a product is out of stock.

Note that the site parameter is only used in multi-site environments for which multi-site inventory is enabled. In these

environments, optional values for site include:

global: returns the inventory values calculated across all sites on the system.

Operation Summary

Invocation Called from client to OrderFlow as required

Method HTTP POST

Example URL /remotewarehouse/inventory.xml?channel=ch1&externalReferences=pr1,pr2,pr3

Parameters channel and/or organisation: retrieves all products for a particular channel and/or organisation

combination, identified by reference (mandatory). site: if multi-site inventory is enabled, then identifies

the site for which inventory is required (mandatory). externalReferences:product codes for which to

retrieve inventories (optional). If no externalReferences are supplied the system will return all products

associated with the channel, for which inventory exists. from: (optional) date or time from which to

consider where a products inventory has changed (inclusive).

<inventory>

<product inventoryId="615" externalReference="DVD-BLDRNDC" site="global"

 total="1" allocated="1" available="-1" frozen="0" .../>

<product inventoryId="616" externalReference="DVD-BLDRNDC" site="DEFAULT"

 total="1" allocated="1" available="-1" frozen="0"/>

<product inventoryId="617" externalReference="DVD-BLDRNDC" site="SECOND"

 total="0" allocated="0" available="0" frozen="0"/>

</inventory>

<product ... inspection="0" damaged="0" quarantined="0"

 onOrder="0" lastStockChangeId="0" lastLineRequirementChangeId="0"/>

•

Product Operations

© OrderFlow Ltd. 2023 Page 21

Skip to content

any: returns the inventory values for the 'global' site as well as for any other site for which the user has access permission.

by site reference, allows inventory values for a specific site to be retrieved.

Note that if multi-site inventory is supported, and no site parameter is supplied, then an inventory record calculated across all

sites on the system is returned.

When using the 'from' parameter, a change is classed as an entry in the product_inventory table.

NOTE: If a products inventory is manually refreshed for any reason (and the underlying total, available, quarantined, onOrder etc

are not updated), this would still trigger a new snapshot, and therefore be treated as an "update". Although this would be quite a

rare occurrence, and would only add a few additional records into the endpoint.

•

•

Product Operations

© OrderFlow Ltd. 2023 Page 22

Skip to content
Order Operations

The OrderFlow API can be used to create orders and optionally, to specify whether the line items within an order are spread

across multiple shipments.

Orders can be cancelled through the API if the order state (out of stock, picked, etc.) is one that allows order cancellation. This

business logic is configurable within OrderFlow.

Order Detail Pull

The OrderFlow API can be used to query the details on a particular order. This operation can be used to pick up all relevant

information which pertains to a single order at a particular point in time, including the current order and associated shipment

states, the availability of individual line items, the earliest ship date, the despatch reference, etc.

The main order state values are the following:

Note that additional order states may be defined to support specific requirements within a particular instance of OrderFlow

Operation Summary

Invocation Called from client to OrderFlow as required.

Method HTTP GET

URL /remoteorder/order/detail.xml?externalReference=81

Order State Description

created The order has been added to the system but not yet processed.

despatched All shipments within the order have been packed.

deleted an order is marked for deletion. Note that deleted orders are not accessible via the API.

Order Operations

© OrderFlow Ltd. 2023 Page 23

Skip to content

Most of the order processing state tracking is done through shipments. Every order must contain at least one shipment, but it is

also possible to support partial despatch of orders through multiple shipments. A selection of the applicable shipments states

are shown below:

In some circumstances it is necessary to track state changes at the order line level. Some of the states that apply for order lines:

Example output is show below.

Shipment

State

Description

created The order and shipment have been added to the system but not yet processed.

ready The shipment is ready for processing, but processing of the shipment has not started. At this point, no stock

will have been allocated to the shipment.

allocated Stock has been allocated for all of the order lines in the shipment. Note that if one or more of the order lines is

out of stock, the shipment will remain in the 'ready' state.

on_hold The shipment has been placed on hold, because the earliest ship date is in the future.

picked All order lines for the shipment have been picked, but the shipment has not yet been packed.

packed The shipment has been packed but not yet despatched.

despatched The shipment has been despatched.

deleted The shipment has been marked for deletion. Note that deleted shipments are not accessible via the API.

Order Line State Description

created The order line has been added to the system but not yet processed.

allocated The stock required for the order line has been allocated.

picked The stock required for the order line has been picked.

out-of-stock The stock required for the order line is not available.

packed The order line has been packed.

deleted The order line has been marked for deletion. Note that deleted order lines are not accessible via the API.

Order Operations

© OrderFlow Ltd. 2023 Page 24

Skip to content

Order Cancellation

The process of deleting or cancelling an order is usually driven by the third party application in which the order was first

generated. The process should attempt to delete the order within the OrderFlow system before changing the status of the order

within the third party system.

The OrderFlow system may refuse to cancel an order if has been packed or despatched, in which case an error message will be

returned and cancellation process should fail in the third party application.

TEMPORARY VS PERMANENT CANCELLATION

One of the options on order cancellation is the use of the cancelChangesExternalReference . If set to false, the order reference

will not be changed. Because OrderFlow does not allow duplicates of orders with the same reference it will not be possible to

reimport the same order.

For some third party systems, a temporary cancellation of the order is required in order to support the reimport of a modified

order. In this case, the old order needs to be cancelled in a way that will allow the same (but modified) order to be reimported into

the system. In this case the cancelChangesExternalReference parameter is used with the value of true.

If not supplied, the implied value for the cancelChangesExternalReference is typically false , although this can be changed by

configuration.

<order externalReference="81" state="despatched">

 <shipments>

 <shipment sequence="1" state="created" earliestShipDate="2014-02-11">

 <orderLines>

 <orderLine product="steepletoneroxy1pink" quantity="1"

 state="created">

 </orderLine>

 </orderLines>

 </shipment>

 </shipments>

</order>

Operation Summary

Invocation From 3rd party system to OrderFlow

Method HTTP POST

URL /remoteorder/order/cancel.xml

Parameters externalReference: the reference of the order to be cancelled. cancelChangesExternalReference: whether

cancellation should change the order reference

Order Operations

© OrderFlow Ltd. 2023 Page 25

Skip to content

ERROR CASES

If an attempt is made to cancel an order, one of the following scenarios will apply:

the cancellation will take place as expected. All shipments in the order that have not already been completed will be

cancelled.

the cancellation cannot take place because one of more of the shipments cannot be cancelled. For example, if a shipment

has already been packed, it will need to be unpacked before it is eligible for cancellation.

The are situations when a cancellation cannot be attempted. If an attempt is made to cancel an order which is not on an

authenticated channel, an UnauthorizedDataAccessException will be raised.

If the third party system attempts to cancel an order which has not yet been received by OrderFlow, then MissingDataException

will be raised. The cancellation operation will return XML as in the following example:

When MissingDataException is raised, the most appropriate behaviour on the third party system is to allow the underlying

cancellation to proceed, in contrast to other situations in which it would be more appropriate to block the cancellation.

Order Line Cancellation

As with orders, order line cancellation via the OrderFlow Remote API is typically initiated by the third party application from which

the order line was received.

Once invoked, the process will attempt to delete the order line within OrderFlow. The shipment to which the order line belonged

will be reset to the start of the despatch processing workflow. This is because paperwork, courier selections and other aspects of

despatch processing will ususally need to change to reflect the modified shipment contents.

•

•

<?xml version="1.0" encoding="UTF-8"?>

<error>

<message>

<![CDATA[Unable to find order for reference 'duff'.]]>

</message>

<exception>rtd.exceptions.MissingDataException</exception>

<detail>

<![CDATA[... error detail below]]>

</detail>

</error>

Operation Summary

Invocation From 3rd party system to OrderFlow

Method HTTP POST

URL /remoteorder/order/cancel.xml

Parameters orderReference: the reference of the order to be cancelled. productReference: the product reference (SKU) within the

order line to be cancelled. thirdPartyReference: any (optional) third-party reference associated with the order line to

be cancelled. This is used to identify the correct order line if there are multiple order lines for the same product.

Order Operations

© OrderFlow Ltd. 2023 Page 26

Skip to content

Note that there must always be at least one order line present in an order (the last line can not be cancelled). If all of the order

lines in an order need to be cancelled, then the Order Cancellation API operation should be used instead.

If an attempt is made to cancel an order line, one of the following outcomes will apply:

the cancellation will take place as expected. The order line will be removed from the order (and shipment).

the cancellation cannot take place. This may occur for a number of reasons, as described in the next section.

ERROR CASES

OrderFlow may reject an order line cancellation attempt if the line has already been packed or despatched.

Order line cancellation is currently not supported for orders which contain more than one order lines with the same product

reference.

If an attempt is made to cancel an order line which is not on an authenticated channel, an UnauthorizedDataAccessException

will be raised.

In both cases, an error message will be returned and the cancellation process should fail in the third party application.

If the third party system attempts to cancel an order line which has not yet been received by OrderFlow (or is simply not present),

then a MissingDataException will be raised.

The cancellation operation in the event of an error will return XML as in the following example:

When a MissingDataException is raised, the most appropriate behaviour for the third party system is to allow the underlying

cancellation to proceed. This differs from other cases where blocking the cancellation would be more appropriate.

Hold Order

(Available from release 4.3.1.2)

Third party applications may request that an order within the OrderFlow system be placed on-hold; if successful, all of the order's

shipments will be moved to an on-hold state.

•

•

<?xml version="1.0" encoding="UTF-8"?>

<error>

<message>

<![CDATA[Unable to find order line with product 'duff'.]]>

</message>

<exception>rtd.exceptions.MissingDataException</exception>

<detail>

<![CDATA[... error detail below]]>

</detail>

</error>

Order Operations

© OrderFlow Ltd. 2023 Page 27

Skip to content

The OrderFlow system may refuse to place an order on-hold if it has been packed or despatched, in which case an error message

will be returned and the process should consequently fail in the third party application.

ERROR CASES

If an attempt is made to place an order on-hold, one of the following scenarios will apply:

the action will take place as expected. All shipments in the order will be moved to an on-hold state.

the action cannot take place because one or more of the shipments cannot be placed on-hold. For example, if a shipment

has already been packed.

There are situations when an on-hold request cannot be attempted. If an attempt is made to hold an order which is not on an

authenticated channel, an UnauthorizedDataAccessException will be raised.

If the third party system attempts to hold an order which has not yet been received by OrderFlow, then a MissingDataException

will be raised.

In an error scenario, the operation will return XML indicating the failure and reason, as in the following example:

Release Order

(Available from release 4.3.1.2)

Third party applications may request that an on-hold order within the OrderFlow system be released; if successful, all of the

order's shipments will be moved back to their pre-held state.

Operation Summary

Invocation From 3rd party system to OrderFlow

Method HTTP POST

URL /remoteorder/order/hold.xml

Header channel: required channel authentication value (see HTTP Authentication)

Parameters externalReference: the reference of the order to be placed on hold.

•

•

<?xml version="1.0" encoding="UTF-8"?>

<error>

<message>

<![CDATA[Unable to find order for reference 'duff'.]]>

</message>

<exception>rtd.exceptions.MissingDataException</exception>

<detail>

<![CDATA[... error detail below]]>

</detail>

</error>

Order Operations

© OrderFlow Ltd. 2023 Page 28

Skip to content

The OrderFlow system will refuse to release an order if it's shipments are not in an-hold state, in which case an error message

will be returned and the process should consequently fail in the third party application.

ERROR CASES

If an attempt is made to release an order from on-hold, one of the following scenarios will apply:

the action will take place as expected. All shipments in the order will be moved to their pre-held state.

the action cannot take place because one of more of the shipments cannot be released from on-hold. For example, if a

shipment is not in an on-hold state.

There are situations when a release from on-hold request cannot be attempted. If an attempt is made to hold an order which is

not on an authenticated channel, an UnauthorizedDataAccessException will be raised.

If the third party system attempts to hold an order which has not yet been received by OrderFlow, then a MissingDataException

will be raised.

In an error scenario, the operation will return XML indicating the failure and reason, as in the following example:

Pending Shipments

This API call can be used to get a list of pending shipments for a particular sales channel.

Operation Summary

Invocation From 3rd party system to OrderFlow

Method HTTP POST

URL /remoteorder/order/release.xml

Header channel: required channel authentication value (see HTTP Authentication)

Parameters externalReference: the reference of the order to be released from on-hold.

•

•

<?xml version="1.0" encoding="UTF-8"?>

<error>

<message>

<![CDATA[Unable to find order for reference 'duff'.]]>

</message>

<exception>rtd.exceptions.MissingDataException</exception>

<detail>

<![CDATA[... error detail below]]>

</detail>

</error>

Order Operations

© OrderFlow Ltd. 2023 Page 29

Skip to content

For each shipment listed, the created date, shipment reference, order reference, state and earliest ship date is shown.

Note that usage of this API may be throttled for performance reasons, as in some environments a large volume of data may be

returned with each call. Clients are expected to use the operation sensibly.

Shipments State Change

(Available from release 4.3.2)

This API call can be used to get a list of shipments from Orderflow that have had a state change within a from/to date range for a

particular sales channel and or organisation combination.

Operation Summary

Invocation From 3rd party system to OrderFlow

Method HTTP GET

URL /remoteorder/shipment/pending.xml

Parameters channel: the channel under consideration

<?xml version="1.0" encoding="utf-8" ?>

<shipments>

 <shipment>

 <created>2014-01-18 00:00:00</created>

 <reference>1001</reference>

 <orderReference>100</orderReference>

 <state>out_of_stock</state>

 <earliestShipDate>2014-01-18</earliestShipDate>

 </shipment>

 <shipment>

 <created>2014-01-17 00:00:00</created>

 <reference>1011</reference>

 <orderReference>101</orderReference>

 <state>move_pending</state>

 <earliestShipDate>2014-01-17</earliestShipDate>

 </shipment>

 ...

 <shipment>

 <created>2014-01-27 00:00:00</created>

 <reference>OSC200612300011</reference>

 <orderReference>OSC20061230001</orderReference>

 <state>out_of_stock</state>

 <earliestShipDate>2014-01-28</earliestShipDate>

 </shipment>

 <shipment>

 <created>2014-01-28 00:00:00</created>

 <reference>OSC200703190011</reference>

 <orderReference>OSC20070319001</orderReference>

 <state>move_pending</state>

 <earliestShipDate>2014-01-28</earliestShipDate>

 </shipment>

</shipments>

Order Operations

© OrderFlow Ltd. 2023 Page 30

Skip to content

Note that in the use of the from and to parameter, the date formats should be used as follows:

yyyy-MM-dd HH:mm:ss : use this to query within a specified time interval yyyy-MM-dd : use this to query within specified date

intervals

Note that the to parameter value is exclusive. In order to get shipments from March 27 2014, use 2014-03-27 to 2014-03-28 .

In order to get shipments from 3pm to 4pm on that day, you can use 2014-03-27 15:00:00 to 2014-03-27 16:00:00 .

Note that the includeLines value can be either true or false , or omitted. If omitted, order lines will not be shown.

(Note that <originatingOrderReference> was introduced in 4.3.4)

For each shipment listed, the created date, shipment reference, order reference, state and earliest ship date is shown.

Operation Summary

Invocation From 3rd party system to OrderFlow

Method HTTP GET

URL /remoteorder/shipment/statechange.xml

Parameters channel and/or organisation: retrieves all shipments for a particular channel and/or organisation

combination, identified by reference (mandatory). from: the date or time from which to consider. to:

(optional) the date or time to which to consider. includeLines: (optional) to include shipment lines in the

shipment. site:

<?xml version="1.0" encoding="utf-8" ?>

<shipments>

 <shipment>

 <created>2014-01-18 00:00:00</created>

 <reference>1001</reference>

 <orderReference>100</orderReference>

 <originatingOrderReference>5049ecb6-6745-4c1e-8eed-be4c17204444</originatingOrderReference>

 <state>out_of_stock</state>

 <earliestShipDate>2014-01-18</earliestShipDate>

 <orderLines>

 <orderLine>

 <productReference>uom1</productReference>

 <quantity>4</quantity>

 <state>allocated</state>

 <thirdPartyReference></thirdPartyReference>

 </orderLine>

 </orderLines>

 </shipment>

 <shipment>

 <created>2014-01-17 00:00:00</created>

 <reference>1011</reference>

 <orderReference>101</orderReference>

 <originatingOrderReference>01ad2357-0e0e-46fe-9656-1605ffab7b2c</originatingOrderReference>

 <state>move_pending</state>

 <earliestShipDate>2014-01-17</earliestShipDate>

 </shipment>

 ...

 <shipment>

 <created>2014-01-27 00:00:00</created>

 <reference>OSC200612300011</reference>

 <orderReference>OSC20061230001</orderReference>

Order Operations

© OrderFlow Ltd. 2023 Page 31

Skip to content

Note that usage of this API may be throttled for performance reasons, as in some environments a large volume of data may be

returned with each call. Clients are expected to use the operation sensibly.

The following two application properties, can be adjusted to restrict the number of rows retrieved

To restrict the maximum number of rows that can be returned remote.order.shipment.state.change.endpoint.max.row.returned

To restrict the number of days between from the supplied 'from' and 'to' date (if no 'to' date is used then today's date is applied

remote.order.shipment.state.change.endpoint.max.days

Despatched Shipments Per Time Period

This operation allows third party systems to query despatched shipments over a specified time period.

Note that in the use of the from and to parameter, the date formats should be used as follows:

yyyy-MM-dd HH:mm:ss : use this to query within a specified time interval yyyy-MM-dd : use this to query within specified date

intervals

Note that the to parameter value is exclusive. In order to get shipments from March 27 2014, use 2014-03-27 to 2014-03-28 .

In order to get shipments from 3pm to 4pm on that day, you can use 2014-03-27 15:00:00 to 2014-03-27 16:00:00 .

Note that the includeOrderLines value can be either true or false , or omitted. If omitted, order lines will not be shown.

 <originatingOrderReference></originatingOrderReference>

 <state>out_of_stock</state>

 <earliestShipDate>2014-01-28</earliestShipDate>

 </shipment>

 <shipment>

 <created>2014-01-28 00:00:00</created>

 <reference>OSC200703190011</reference>

 <orderReference>OSC20070319001</orderReference>

 <originatingOrderReference></originatingOrderReference>

 <state>move_pending</state>

 <earliestShipDate>2014-01-28</earliestShipDate>

 </shipment>

</shipments>

Operation

Summary

Invocation From 3rd party system to OrderFlow

Method HTTP POST

URL /remoteorder/shipment/despatches.xml

Parameters channel and/or organisation: (organisation available from 4.3.4) retrieves all despatched shipments for a

particular channel and/or organisation combination, identified by reference (mandatory). from: the date or time

from which to consider. to: the date or time to which to consider. includeOrderLines: (optional, from 3.7.8) to

include order lines in the shipment. includePackageLines: (optional, from 4.0.5) to include lines for packages in

the shipment

Order Operations

© OrderFlow Ltd. 2023 Page 32

Skip to content

(Note that <originatingOrderReference> was introduced in 4.3.4)

An example result set is shown below, which has been created with includeOrderLines set to true:

<?xml version="1.0" encoding="utf-8" ?>

<shipments>

 <shipment>

 <reference>831</reference>

 <orderReference>83</orderReference>

 <originatingOrderReference>5049ecb6-6745-4c1e-8eed-be4c17204444</originatingOrderReference>

 <state>despatched</state>

 <carrier>royalmail_tracked</carrier>

 <service>TPN01</service>

 <despatchReference>TT222211109GB</despatchReference>

 <completed>2014-04-25 09:30:08</completed>

 <orderLines>

 <orderLine>

 <productReference>spa_sku1</productReference>

 <quantity>5</quantity>

 <thirdPartyReference></thirdPartyReference>

 </orderLine>

 <orderLine>

 <productReference>spa_sku2</productReference>

 <quantity>3</quantity>

 <thirdPartyReference></thirdPartyReference>

 </orderLine>

 </orderLines>

 </shipment>

 <shipment>

 <reference>851</reference>

 <orderReference>85</orderReference>

 <originatingOrderReference>01ad2357-0e0e-46fe-9656-1605ffab7b2c</originatingOrderReference>

 <state>despatched</state>

 <carrier>royalmail_tracked</carrier>

 <service>TPN01</service>

 <despatchReference>TT222211090GB</despatchReference>

 <completed>2014-04-25 09:30:08</completed>

 <orderLines>

 <orderLine>

 <productReference>spa_sku1</productReference>

 <quantity>1</quantity>

 <thirdPartyReference></thirdPartyReference>

 </orderLine>

 </orderLines>

 </shipment>

 <shipment>

 <reference>1081</reference>

 <orderReference>108</orderReference>

 <originatingOrderReference></originatingOrderReference>

 <state>despatched</state>

 <carrier>royalmail_tracked</carrier>

 <service>TPS01</service>

 <despatchReference>TT222211069GB</despatchReference>

 <completed>2014-04-25 09:30:08</completed>

 <packages>

 <package despatchReference="TT222211069GB">

 <packageLines>

 <packageLine

 product="spa_sku3"

 quantity="10"

 state="created">

 </packageLine>

 </packageLines>

 </package>

 <package despatchReference="TT222211070GB">

 <packageLines>

 <packageLine

 product="spa_sku3"

 quantity="10"

 state="created">

Order Operations

© OrderFlow Ltd. 2023 Page 33

Skip to content

Note that the returned data includes the carrier and service code, as well as the despatch reference, for each outgoing shipment.

For OrderFlow 4.0.5 and above, if multiple packages are present, then these will be displayed, together with the package

references, as well as package lines, if the includePackageLines option is set.

Purchase Orders changed Within Time Period

(Available from release 4.3.2)

This operation allows third party systems to query purchase orders changed over a specified time period.

Note that in the use of the from and to parameter, the date formats should be used as follows:

yyyy-MM-dd HH:mm:ss : use this to query within a specified time interval yyyy-MM-dd : use this to query within specified date

intervals

Note that the to parameter value is exclusive. In order to get deliveries from March 27 2014, use 2014-03-27 to 2014-03-28 . In

order to get po's from 3pm to 4pm on that day, you can use 2014-03-27 15:00:00 to 2014-03-27 16:00:00 .

Note that the includeLines value can be either true or false , or omitted. If omitted, PO lines will not be shown.

An example result set is shown below, which has been created with includeLines set to true:

 </packageLine>

 </packageLines>

 </package>

 </packages>

 <orderLines>

 <orderLine>

 <productReference>spa_sku3</productReference>

 <quantity>20</quantity>

 <thirdPartyReference></thirdPartyReference>

 </orderLine>

 </orderLines>

 </shipment>

</shipments>

Operation

Summary

Invocation From 3rd party system to OrderFlow

Method HTTP POST

URL /remotewarehouse/purchaseorder/retrieve.xml

Parameters organisation: the organisation under consideration. from: the date or time from which to consider. to: (optional)

the date or time to which to consider. includeLines: (optional) to include purchase order lines in the PO. site:

(optional) the site under consideration. state: (optional) the returned purchase orders will be restricted by the

state supplied

<?xml version="1.0" encoding="utf-8" ?>

<?xml version="1.0" encoding="utf-8" ?>

Order Operations

© OrderFlow Ltd. 2023 Page 34

Skip to content

Applied Deliveries Per Time Period

(Available from release 4.3.0)

This operation allows third party systems to query applied deliveries over a specified time period.

<purchaseOrders>

 <purchaseOrder>

 <id>9</id>

 <organisation>The Protein Works</organisation>

 <site>Aragon</site>

 <state>complete</state>

 <externalReference>TEST_po_2</externalReference>

 <thirdPartyReference></thirdPartyReference>

 <thirdPartyAdditionalReference></thirdPartyAdditionalReference>

 <note></note>

 <supplierReference>TEST_purchaseOrder_02</supplierReference>

 <type>supplier</type>

 <purchaseOrderDate></purchaseOrderDate>

 <created>2023-02-22 15:26:26</created>

 <requestedDeliveryDate></requestedDeliveryDate>

 <expectedDeliveryDate>2022-02-03 00:00:00</expectedDeliveryDate>

 <lastUpdated>2023-02-22 15:26:26</lastUpdated>

 <completed></completed>

 <purchaseOrderLines>

 <purchaseOrderLine>

 <productReference>weight_g01</productReference>

 <quantity>4100</quantity>

 <outstandingQuantity>4100</outstandingQuantity>

 <state>created</state>

 <externalReference>poLine1</externalReference>

 <thirdPartyReference></thirdPartyReference>

 <licencePlateReference></licencePlateReference>

 <operatorNote></operatorNote>

 </purchaseOrderLine>

 <purchaseOrderLine>

 <productReference>weight_g02</productReference>

 <quantity>5100</quantity>

 <outstandingQuantity>5100</outstandingQuantity>

 <state>created</state>

 <externalReference>poLine2</externalReference>

 <thirdPartyReference></thirdPartyReference>

 <licencePlateReference></licencePlateReference>

 <operatorNote></operatorNote>

 </purchaseOrderLine>

Operation

Summary

Invocation From 3rd party system to OrderFlow

Method HTTP POST

URL /remotewarehouse/delivery/applied.xml

Parameters organisation: the organisation under consideration. from: the date or time from which to consider. to: (optional)

the date or time to which to consider. includeLines: (optional) to include delivery lines in the delivery. site:

(optional) the site under consideration. includePOData: (optional) to include the Purchase Order within the

delivery node, and 'Purchase Order Line' thirdpartyReference within the delivery line nodes

Order Operations

© OrderFlow Ltd. 2023 Page 35

Skip to content

Note that in the use of the from and to parameter, the date formats should be used as follows:

yyyy-MM-dd HH:mm:ss : use this to query within a specified time interval yyyy-MM-dd : use this to query within specified date

intervals

Note that the to parameter value is exclusive. In order to get deliveries from March 27 2014, use 2014-03-27 to 2014-03-28 . In

order to get deliveries from 3pm to 4pm on that day, you can use 2014-03-27 15:00:00 to 2014-03-27 16:00:00 .

Note that the includeLines value can be either true or false , or omitted. If omitted, delivery lines will not be shown.

An example result set is shown below, which has been created with includeLines set to true:

<?xml version="1.0" encoding="utf-8" ?>

<deliveries>

 <delivery>

 <id>4</id>

 <organisation>Myco Incorporated</organisation>

 <site>Default</site>

 <state>applied</state>

 <deliveryDate>2010-11-05 17:25:05</deliveryDate>

 <note></note>

 <supplierReference></supplierReference>

 <created>2010-11-05 17:25:05</created>

 <completed>2010-11-05 17:25:05</completed>

 <deliveryLines>

 <deliveryLine>

 <productReference>DVD-SPEED</productReference>

 <quantity>10</quantity>

 </deliveryLine>

 <deliveryLine>

 <productReference>DVD-FRAN</productReference>

 <quantity>5</quantity>

 </deliveryLine>

 </deliveryLines>

 </delivery>

 <delivery>

 <id>5</id>

 <organisation>Myco Incorporated</organisation>

 <site>Default</site>

 <state>applied</state>

 <deliveryDate>2010-11-05 17:25:56</deliveryDate>

 <note></note>

 <supplierReference></supplierReference>

 <created>2010-11-05 17:25:56</created>

 <completed>2010-11-05 17:25:56</completed>

 <deliveryLines>

 <deliveryLine>

 <productReference>DVD-FRAN</productReference>

 <quantity>5</quantity>

 </deliveryLine>

 <deliveryLine>

 <productReference>DVD-FDBL</productReference>

 <quantity>100</quantity>

 </deliveryLine>

 </deliveryLines>

 </delivery>

 <delivery>

 <id>6</id>

 <organisation>Myco Incorporated</organisation>

 <site>Default</site>

 <state>applied</state>

 <deliveryDate>2011-03-14 10:40:16</deliveryDate>

 <note></note>

 <supplierReference></supplierReference>

 <created>2011-03-14 10:40:16</created>

 <completed>2011-03-14 10:40:16</completed>

 <deliveryLines>

 <deliveryLine>

Order Operations

© OrderFlow Ltd. 2023 Page 36

Skip to content

Applied Returns Per Time Period

(Available from release 4.3.0)

This operation allows third party systems to query applied returns over a specified time period.

Note that in the use of the from and to parameter, the date formats should be used as follows:

yyyy-MM-dd HH:mm:ss : use this to query within a specified time interval yyyy-MM-dd : use this to query within specified date

intervals

Note that the to parameter value is exclusive. In order to get returns from March 27 2014, use 2014-03-27 to 2014-03-28 . In

order to get returnds from 3pm to 4pm on that day, you can use 2014-03-27 15:00:00 to 2014-03-27 16:00:00 .

Note that the includeLines value can be either true or false , or omitted. If omitted, return lines will not be shown.

Note that the includeOriginatingOrderReference value can be either true or false , or omitted. If omitted, the originating

order reference will not be included.

An example result set is shown below, which has been created with includeLines and includeOriginatingOrderReference

both set to true:

 <productReference>CD-UNFIRE</productReference>

 <quantity>100</quantity>

 </deliveryLine>

 <deliveryLine>

 <productReference>CD-SERGEANT</productReference>

 <quantity>200</quantity>

 </deliveryLine>

 </deliveryLines>

 </delivery>

</deliveries>

Operation

Summary

Invocation From 3rd party system to OrderFlow

Method HTTP POST

URL /remotewarehouse/returnitem/applied.xml

Parameters organisation: the organisation under consideration. from: the date or time from which to consider. to: (optional)

the date or time to which to consider. includeLines: (optional) to include return lines in the return. site: (optional)

the site under consideration. includeOriginatingOrderReference: (optional, available from 4.3.4) to include the

originating order reference in the returned data.

<?xml version="1.0" encoding="utf-8" ?>

<returns>

 <return>

 <id>1</id>

 <organisation>Myco Incorporated</organisation>

 <site>Default</site>

Order Operations

© OrderFlow Ltd. 2023 Page 37

Skip to content

 <state>applied</state>

 <returnDate>2011-07-29 14:18:02</returnDate>

 <note></note>

 <type>goods_not_delivered</type>

 <orderReference></orderReference>

 <originatingOrderReference>5049ecb6-6745-4c1e-8eed-be4c17204444</originatingOrderReference>

 <created>2011-07-29 14:04:32</created>

 <completed>2011-10-14 14:50:47</completed>

 <returnLines>

 <returnLine>

 <productReference>PHO-IPHONE4</productReference>

 <quantity>4</quantity>

 <state>applied</state>

 <returnCondition></returnCondition>

 <reason></reason>

 <note>No reason given</note>

 </returnLine>

 <returnLine>

 <productReference>PHO-HTC-SENSATION</productReference>

 <quantity>2</quantity>

 <state>applied</state>

 <returnCondition></returnCondition>

 <reason></reason>

 <note></note>

 </returnLine>

 </returnLines>

 </return>

 <return>

 <id>26</id>

 <organisation>Myco Incorporated</organisation>

 <site>Default</site>

 <state>applied</state>

 <returnDate>2012-01-24 00:00:00</returnDate>

 <note>adfa</note>

 <type>goods_not_delivered</type>

 <orderReference></orderReference>

 <originatingOrderReference>01ad2357-0e0e-46fe-9656-1605ffab7b2c</originatingOrderReference>

 <created>2019-12-02 16:04:38</created>

 <completed>2019-12-03 16:34:21</completed>

 <returnLines>

 <returnLine>

 <productReference>DVD-FRAN</productReference>

 <quantity>10</quantity>

 <state>applied</state>

 <returnCondition></returnCondition>

 <reason>B - Not as described</reason>

 <note></note>

 </returnLine>

 </returnLines>

 </return>

</returns>

Order Operations

© OrderFlow Ltd. 2023 Page 38

Skip to content
Operations FROM OrderFlow (PUSH)

As described earlier in the PUSH operations described here are from the 'generic' OrderFlow integration. All of the messages are

XML-based.

In order to assist with sequencing, the document (top level) element in the XML document contains a messageId attribute. The

value for this attribute is a sequence number. For successive messages that refer to the same entity, this sequence number can

be used to determine the order in which these messages were generated.

In some cases, the operation is triggered by an event on OrderFlow. In these cases, some extra information on the context of the

operation is passed through by adding an event element wrapper around the detail of the message. The event element passes

through information such as the name of the event, the user, time, etc.

The event element wrapper takes the following format:

As with other push operations, the event element contains the ID for the OrderFlow message sent to the third party system.

We will see specific examples of messages that use the event wrapper in the sections below.

<?xml version="1.0" encoding="UTF-8"?>

<event

 messageId="8"

 eventType="order_cancelled"

 userName="philz"

 eventTime="2015-01-21 10:29:51"

 entity="..."

 ... >

 <detail>

 ...

 </detail>

</event>

Operations FROM OrderFlow (PUSH)

© OrderFlow Ltd. 2023 Page 39

Skip to content
Product Operations

Inventory Push

The structure of the inventory push is the same as the inventory pull, it is used by OrderFlow to PUSH stock levels to Third Party

applications when a change in stock levels triggers the event or as a scheduled background processes.

An example outgoing message is shown below:

Note that each inventory push only includes products whose availability figure has modified since the last successful push

operation. This is to allow for a more efficient inventory update notification process.

Note also that inventory notification is configured on a per organisation/channel basis. This configuration will include URLs,

frequency, etc. The inventory notification can be periodic, or realtime. In the case of the latter, inventory notifications are triggered

each time a change is made to the available quantity for a product.

The sequenceId value can be used to ensure that the latest inventory record is used for a product if multiple inventory messages

are received out of sequence. For most products, the sequenceId will be the same as the inventoryId . However, if the product

does not have an inventory record on the system, then the inventoryId will be zero, and the sequenceId will be set to the

highest inventory ID value on the system at the time that the message was generated.

Operation Summary

Invocation Called from OrderFlow to client, periodic or event driven

Method HTTP POST

Example URL https://thirdpartyurl/productInventory.xml

Example input Body post as below

<?xml version="1.0" encoding="UTF-8"?>

<inventory messageId="15">

 <product

 inventoryId="453"

 sequenceId="453"

 externalReference="CD-SERGEANT"

 organisation="myco"

 site="global"

 total="186"

 allocated="0"

 available="186"

 frozen="0"

 onOrder="0"

 lastStockChangeId="86"

 lastLineRequirementChangeId="0" />

</inventory>

Product Operations

© OrderFlow Ltd. 2023 Page 40

https://thirdpartyurl/productInventory.xml

Skip to content

Stock Change Push

OrderFlow also supports a mechanism to notify third party systems of individual stock changes. This may be useful for third

party systems that need an accurate audit of individual stock changes rather than simply the point in time inventory levels

provided by the Product Inventory operation.

Examples of where an individual stock change feed may be required include:

a third party system needs to maintain a record of stock adjustments and writeoffs for auditing purposes.

OrderFlow needs to be integrated closely with another third party Warehouse Management System.

Stock Change Push notifications are tied to stock change events as they occur in OrderFlow, but can also be sent at regular

intervals using a periodic report. A stock change event may generate one or more stock changes. For example, a move from one

location to another will generate two stock changes: a move_out of one location, and a move_in to another.

An example Stock Change Push entry is shown below:

For both the event and periodic report based approach, the system can be configured to only send particular types of stock

changes. For example, internal stock moves within the system are generally interesting to a third party system. However,

movements into locations for damaged items are more likely to be of interest.

•

•

Operation Summary

Invocation Called from OrderFlow to client on an event, or periodically

Method HTTP POST

Example URL https://thirdpartyurl/stockChanges.xml

Example input Body post as below

<?xml version="1.0" encoding="UTF-8"?>

<stockChanges

 messageId="14"

 organisation="myco"

 site="DEFAULT">

 <stockChange

 id="89"

 type="negative_adjustment"

 timestamp="2015-01-21 16:49:22"

 product="CD-SERGEANT"

 location="location_4"

 locationType="pickable"

 previousQuantity="187"

 changeQuantity="-1"

 newQuantity="186"

 user="philz">

 <note><![CDATA[Item dropped.]]></note>

 </stockChange>

</stockChanges>

Product Operations

© OrderFlow Ltd. 2023 Page 41

https://thirdpartyurl/stockChanges.xml

Skip to content

A list of the most common types of stock changes is shown below:

Stock Change Types Summary

Delivery The receipt of an inbound item via an incoming Delivery to OrderFlow.

Move in The movement of an item into a location. Excludes damaged locations.

Move out The movement of an item out of a location. Excludes damaged locations.

Damaged in The movement of an item into a damaged location.

Damaged out The movement of an item out of a damaged location. Useful if item had been incorrectly recorded as

damaged.

Negative adjustment Used if stock is not present in the current location as previously recorded.

Positive adjustment Used if the stock is present on a location where not previously recorded.

Pack debit debit Records a debit (reduction) in the stock holding of an item following the pack of a shipment.

Unpack credit If a shipment is unpacked, handles the credit of stock back onto the system.

Return Covers the receipt of incoming stock through the returns process.

Product Operations

© OrderFlow Ltd. 2023 Page 42

Skip to content
Delivery and Purchase Order Operations

It is possible to configure OrderFlow to push back event notifications relating to incoming deliveries and purchase orders.

Each time a delivery line is recorded (when a given quantity of a particular product is added to the system), an event can be

generated. Another point at which events can be triggered is when a delivery is completed by moving into the applied state.

Finally, a purchase order (against which multiple deliveries can be recorded) can trigger an event notification when it is marked as

completed; this will take place when no more deliveries are expected to be recorded against the purchase order.

One or more of these event types can be used by a third party application. Each of these is discussed in turn.

Delivery Line Push

The Delivery Line Push event is recorded when a new delivery line is added to the system.

Note that the event is generated only if a stock change is recorded against the delivery line; it is possible, for example, to record

all the lines of the delivery and only apply the stock changes at the end in a single operation. In the latter case, no event will be

generated at this stage.

An example delivery line is shown below. Note that as well as containing details on the product and quantity received, it includes

the detail of the containing delivery. If the delivery was part of a purchase order, then details of the purchase order are included

as well.

Operation Summary

Invocation Called from OrderFlow to client on an event, or periodically

Method HTTP POST

Example URL https://thirdpartyurl/deliveryLine.xml

Example input Body post as below

<?xml version="1.0" encoding="UTF-8"?>

<event

 messageId="4"

 eventType="delivery_line_applied"

 userName="philz"

 eventTime="2015-01-21 16:35:17"

 entity="rtd.domain.DeliveryLine">

 <detail>

 <deliveryLine

 id="24"

 product="ipod5"

 variation="standard"

 quantity="1"

 state="applied">

 <delivery

 id="33"

 type="from_licence_plates"

 state="receiving"

 site="SECOND"

 organisation="acme"

Delivery and Purchase Order Operations

© OrderFlow Ltd. 2023 Page 43

https://thirdpartyurl/deliveryLine.xml

Skip to content

Note that as with the Order Event Push operations, the delivery uses the event element wrapper.

Delivery Push

At the point when a delivery is completed or applied, an event message can be triggered.

The Delivery Push message contains details on all of the delivery lines included within the delivery. This makes it possible to

identify any delivery line messages that have not been received, or indeed, to rely on the Delivery Push message for a complete

record of the deliveries applied.

An example Delivery Push message is shown below.

 supplierReference="default"

 supplierDeliveryReference="acmedel_1"

 deliveryDate="2013-07-18"

 created="2013-07-18 15:11:32">

 <purchaseOrder

 id="6"

 externalReference="po_acme_1"

 state="created"

 supplierPurchaseOrderReference="po_acme_1"

 manuallyCompleted="false"

 purchaseOrderDate="2013-09-05">

 </purchaseOrder>

 </delivery>

 </deliveryLine>

 </detail>

</event>

Operation Summary

Invocation Called from OrderFlow to client on an event, or periodically

Method HTTP POST

Example URL https://thirdpartyurl/delivery.xml

Example input Body post as below

<?xml version="1.0" encoding="UTF-8"?>

<event

 messageId="6"

 eventType="delivery_applied"

 userName="philz"

 eventTime="2015-01-21 16:40:08"

 entity="rtd.domain.Delivery">

 <detail>

 <delivery

 id="33"

 type="from_licence_plates"

 state="applied"

 site="SECOND"

 organisation="acme"

 supplierReference="default"

 supplierDeliveryReference="acmedel_1"

 deliveryDate="2013-07-18"

 created="2013-07-18 15:11:32"

Delivery and Purchase Order Operations

© OrderFlow Ltd. 2023 Page 44

https://thirdpartyurl/delivery.xml

Skip to content

The detail on the delivery includes a reference to the supplier, the supplier's reference for the delivery, as well as the date on

which the delivery was expected, received and completed.

Purchase Order Push

A Purchase Order Push event can be triggered when a purchase order is completed on the system. When a delivery is completed

on OrderFlow, the purchase order will automatically be completed if there are no further outstanding items on the purchase order.

In this case, there is no need for a separate purchase order notification.

However, if the purchase does still contain outstanding items, it is possible to complete the purchase order manually if no further

deliveries are expected against the purchase order, and in turn, generate a Purchase Order push notification.

An example purchase order notification is shown below:

 completed="2015-01-21 16:40:08">

 <purchaseOrder

 id="6"

 externalReference="po_acme_1"

 state="partially_applied"

 supplierPurchaseOrderReference="po_acme_1"

 manuallyCompleted="false"

 purchaseOrderDate="2013-09-05">

 </purchaseOrder>

 <deliveryLines>

 <deliveryLine

 id="23"

 product="ipod5"

 variation="stock_only"

 quantity="1"

 state="applied" />

 <deliveryLine

 id="24"

 product="ipod5"

 variation="stock_only"

 quantity="1"

 state="applied" />

 </deliveryLines>

 </delivery>

 </detail>

</event>

Operation Summary

Invocation Called from OrderFlow to client on an event, or periodically

Method HTTP POST

Example URL https://thirdpartyurl/purchaseOrder.xml

Example input Body post as below

<?xml version="1.0" encoding="UTF-8"?>

<event

 messageId="7"

 eventType="purchase_order_completed_manually"

 userName="philz"

Delivery and Purchase Order Operations

© OrderFlow Ltd. 2023 Page 45

https://thirdpartyurl/purchaseOrder.xml

Skip to content

 eventTime="2015-01-21 16:41:09"

 entity="rtd.domain.PurchaseOrder">

 <detail>

 <purchaseOrder

 messageId="7"

 id="6"

 externalReference="po_acme_1"

 state="completed"

 organisation="acme"

 site="SECOND"

 supplierReference="HAMA"

 supplierPurchaseOrderReference="po_acme_1"

 manuallyCompleted="true"

 purchaseOrderDate="2013-09-05">

 <note><![CDATA[No more items to receive.]]></note>

 <purchaseOrderLines>

 <purchaseOrderLine

 id="9"

 product="ipod5"

 quantity="10"

 outstanding="8"

 externalReference="acme1_1"

 state="created">

 </purchaseOrderLine>

 <purchaseOrderLine

 id="10"

 product="woodworm_zoom"

 quantity="8"

 outstanding="8"

 externalReference="acme1_2"

 state="created">

 </purchaseOrderLine>

 <purchaseOrderLine

 id="11"

 product="cyclepro_cape"

 quantity="20"

 outstanding="20"

 externalReference="acme1_3"

 state="created">

 </purchaseOrderLine>

 </purchaseOrderLines>

 <deliveries>

 <delivery

 id="33"

 type="from_licence_plates"

 state="applied"

 supplierDeliveryReference="acmedel_1"

 deliveryDate="2013-07-18"

 created="2013-07-18 15:11:32"

 completed="2015-01-21 16:40:08">

 <deliveryLines>

 <deliveryLine

 id="23"

 product="ipod5"

 variation="stock_only"

 quantity="1"

 state="applied" />

 <deliveryLine

 id="24"

 product="ipod5"

 variation="stock_only"

 quantity="1"

 state="applied" />

 </deliveryLines>

 </delivery>

 </deliveries>

 </purchaseOrder>

 </detail>

</event>

Delivery and Purchase Order Operations

© OrderFlow Ltd. 2023 Page 46

Skip to content

The Purchase Order Push notification contains details of all the lines in the purchase order, together with the quantity

outstanding for each line.

In addition, the notification contains details on all of the deliveries applied against the purchase order, as well as lines contained

within these deliveries. This makes it possible to verify that all of the deliveries expected against the purchase order have been

received and processed.

Delivery and Purchase Order Operations

© OrderFlow Ltd. 2023 Page 47

Skip to content
Order Operations

Event Push

OrderFlow can be configured to push notification of changes made to an order to the associated third party applicaiton. The main

changes of interest are usually changes to the status of an order or its associated shipments, for example, which take place for

example when shipments are marked as packed or despatched.

Each of these different status types may also return additional information. Generic information, such as the time and user name

of the event instigator, will always be available. In other cases, relevant additional information may be available.

Order events can be triggered at the order, shipment and/or line item level. The main ways in which a status notification will be

triggered as as follows:

when a state change occurs, for example, when a shipment's status changes from picked to packed.

when a non-state changing operation is executed. For example, when a shipment is printed, no change of the shipment takes

place.

However, it is still possible for a notification to be sent to the third party system.

Order Event Pushes can be triggered from events that take place on an order, the shipments used to despatch lines within the

order, or on the lines themselves.

Exactly which combination of order, shipment and line item events and operations result in event notifications can be controlled

through the OrderFlow configuration.

An example order state notification is shown below, in this case for the despatch of a shipment.

•

•

Operation Summary

Invocation Called from OrderFlow to client, typically event driven

Method HTTP POST

Example URL https://thirdpartyurl/orderEvent.xml

<?xml version="1.0" encoding="UTF-8"?>

<event

 messageId="4"

 eventType="shipment_despatched"

 userName="philz"

 eventTime="2015-01-22 11:34:08"

 entity="rtd.domain.Shipment"

 externalReference="141"

 operation="despatch"

 state="despatched">

 <detail>

 <order

 externalReference="141"

 state="despatched">

 <shipments>

 <shipment

Order Operations

© OrderFlow Ltd. 2023 Page 48

https://thirdpartyurl/orderEvent.xml

Skip to content

An example for an order cancellation is shown below:

Note that in both cases, the operation has been triggered by event on the system. This is clear from the event element that

wraps the detail of the message.

 sequence="1"

 state="despatched"

 externalReference="1411"

 earliestShipDate="2009-12-07"

 courier="royalmail_dmo"

 despatchReference="12345678">

 <orderLines>

 <orderLine

 product="DVD-REDC"

 quantity="1"

 state="packed">

 </orderLine>

 </orderLines>

 </shipment>

 </shipments>

 </order>

 </detail>

</event>

<?xml version="1.0" encoding="UTF-8"?>

<event

 messageId="8"

 eventType="order_cancelled"

 userName="philz"

 eventTime="2015-01-21 10:29:51"

 entity="rtd.domain.OrderItem"

 externalReference="SPA_MULTI_4"

 state="cancelled"

 operation="cancel">

 <detail>

 <order

 externalReference="SPA_MULTI_4"

 state="cancelled">

 <shipments>

 <shipment

 sequence="1"

 state="cancelled"

 externalReference="SPA_MULTI_4"

 earliestShipDate="2014-11-05"

 courier="generic">

 <orderLines>

 <orderLine

 product="spa_sku2"

 quantity="3"

 state="cancelled">

 </orderLine>

 <orderLine

 product="spa_sku3"

 quantity="1"

 state="cancelled">

 </orderLine>

 <orderLine

 product="spa_sku4"

 quantity="2"

 state="cancelled">

 </orderLine>

 </orderLines>

 </shipment>

 </shipments>

 </order>

 </detail>

</event>

Order Operations

© OrderFlow Ltd. 2023 Page 49

Skip to content
Shipment Operations

Payment Request

OrderFlow is able to send requests to third party applications to request that payment be taken for a shipment. This operation

only applies for configurations for which up front payment does not occur, In these cases, payment is only taken when the lines

for a particular shipment are verified to be in stock. The Payment Request operation is typically invoked within OrderFlow prior to

picking to limit the operational consequences of a failed payment request.

The data provided as part of the request includes the shipment and its containing order reference, as well as the line items

associated with the payment request.

Example body text for the Payment Request invocation is shown below:

Invocation of this operation by OrderFlow should trigger a corresponding Payment Response operation described below.

However, these two operations are not tied to each other in a synchronous fashion.

Following receipt of the Payment Request, the third party application should return a success response to OrderFlow, at which

point, OrderFlow will change the status of the relevant shipment to awating_payment_confirmation . Subsequently, the third party

application will trigger payment to be taken via an interaction with the relevant payment gateway, after which the Payment

Response will be used to communicate the result back to OrderFlow.

Payment Response

This service should be used by a third party applications to report the payment status of a shipment following earlier receipt of a

Payment Request call from OrderFlow. The call to this method is invoked at some point after the third party application has had a

chance to process the shipment referred to in the Payment Request call.

Operation Summary

Invocation PUSH from OrderFlow to shopping cart at the point a shipment can be processed

Method HTTP POST

Example URL https://thirdpartyurl/requestPayment.xml

<paymentRequest date="2014-05-10 19:10:21">

 <order externalReference="multishipment">

 <shipments>

 <shipment externalReference="multishipment2">

 <orderLines>

 <orderLine product="DVD-BELOVED" quantity="3">

 </orderLine>

 <orderLine product="DVD-MATR" quantity="4">

 </orderLine>

 </orderLines>

 </shipment>

 </shipments>

 </order>

</paymentRequest>

Shipment Operations

© OrderFlow Ltd. 2023 Page 50

https://thirdpartyurl/requestPayment.xml

Skip to content

For successes it should simply replay the contents of the payment request, but indicate using a result attribute that the payment

confirmation is successful.

For a success operation, the body of the Payment Response invocation would be as below.

Note the use of the success flag to indicate successful completion of the operation.

For failed payments, the body would be as shown below.

Note that for both successful and failed payments the order line contents of the shipment is replayed back to OrderFlow. In the

case of payment failure, a message and optional response code is passed back to OrderFlow. In this case, OrderFlow will set the

state of the shipment to payment_request_failed . Only if payment is successful will the shipment be put back into the despatch

workflow.

Operation Summary

Invocation Invoked by the 3rd party application responsible for interfaces with the payment gateway

Method HTTP POST

Example URL https://thirdpartyurl/shipmentresponse.xml

<paymentResponse result="success">

 <order …>

 … contents as per Payment Request

 </order>

</paymentResponse>

<paymentResponse result="failed">

 <message>Message from payment gateway</message>

 <code>XYZ</code>

 <order …>

 … contents as per Payment Request

 </order>

</paymentResponse>

Shipment Operations

© OrderFlow Ltd. 2023 Page 51

https://thirdpartyurl/shipmentresponse.xml

Skip to content
Return Operations

Return Push

A Return Push event can be triggered when a return is applied on the system.

An example return notification is shown below:

The Return Push notification contains details of all the lines in the return.

Operation Summary

Invocation Called from OrderFlow to client on an event, or periodically

Method HTTP POST

Example URL https://thirdpartyurl/return.xml

Example input Body post as below

<?xml version="1.0" encoding="UTF-8"?>

<event

 messageId="243"

 eventType="return_item_applied"

 userName="philz"

 eventTime="2018-01-21 14:46:45"

 entity="rtd.domain.Return">

 <detail>

 <return

 id="10035468782"

 authorised="true"

 type="stock"

 site="DEFAULT"

 authorisation="10035468782"

 orderReference="10025908733"

 >

 <returnLine

 product="DVD-REDC"

 quantity="1"

 reason="D - Wrong product sent"

 condition="As new"

 refund="true"/>

 <returnLine

 product="DVD-BELOVED"

 quantity="2"

 reason="E - Quality/Manufacturing fault"

 condition="Product damaged (irreparable)"

 refund="true"/>

 </return>

 </detail>

</event>

Return Operations

© OrderFlow Ltd. 2023 Page 52

https://thirdpartyurl/return.xml

Skip to content
Appendix

Import Field Definition Detail

The next section provides detail on the field definitions used in the product, order and other import operations.

Product Import Fields

More detail on the fields which can be imported using the Product Import and Product Update are shown below.

PRODUCT FIELDS

Name Mandatory Format Example

externalReference YES VARCHAR(120) DVD-UNSG

description YES VARCHAR(120) Under Siege

type YES VARCHAR(120) The 'logical'

type of the product.

Products of different types

will be used by the system in

different ways.

Implementation-dependent

quantityType NO Denotes what the quantity

means for the product.

Defaults to 'unit' if omitted.

unit , weight , volume

displayUnits NO The units to be displayed on

the user interfaces for this

product, if quantity type is

not 'unit'. Will be abbreviated

where appropriate.

kilogram , gram , milligram , litre ,

millilitre

barcode NO VARCHAR(120) 112112113455

thirdPartyReference NO VARCHAR(100) 654913223164

Appendix

© OrderFlow Ltd. 2023 Page 53

Skip to content

Name Mandatory Format Example

imageReference NO VARCHAR(120) Used to provide link to an external

system holding images of the product. Can be a relative

path.

images/dvd-

unsg.gif

packagingDescription NO VARCHAR(255) Text describing how item is packaged

and quantity thereof.

Cartons of 12

harmonisedSystemCode NO VARCHAR(255) The harmonized system (HS) customs

code. If not set, can be inferred from product category.

8523.49.5100

customsDescription NO VARCHAR(255) The description of the product for

customs paperwork. If not set, can be inferred from

product category.

Media

productComposition NO VARCHAR(255) Typically used for customs purposes.

countryOfOrigin NO VARCHAR(255) Typically for customs declarations. ISO

code or full country name.

GB

weight NO FLOAT 100

weightUnits NO VARCHAR(10) gram

physicalStorageTypes NO VARCHAR(1024) A comma-separated list of the

physical storage types which are used to hold products

of this type

Implementation-

dependent

category NO VARCHAR(10) gram

Import Field Definition Detail

© OrderFlow Ltd. 2023 Page 54

Skip to content

Name Mandatory Format Example

weightUnits NO VARCHAR(120) Refers to an entry in the product category table DVD

sellable NO BOOLEAN Used to indicate that a product is for sale on one or

more channels.

dangerous NO BOOLEAN Used to indicate that a product is considered

dangerous, usually w.r.t. couriers.

hazardClass NO VARCHAR(100) flammable_liquids

fragile NO BOOLEAN Used to indicate that a product is fragile, usually w.r.t.

couriers.

priceNet NO FLOAT 1.8

priceGross NO FLOAT 1.99

tax NO FLOAT 0.19

taxCode NO FLOAT T1

currency NO One of a predefined list of values (usually based on ISO 4217)

which may be used to control the information shown on customer

paperwork

GBP , USD , CNY ,

EUR

Import Field Definition Detail

© OrderFlow Ltd. 2023 Page 55

Skip to content

Name Mandatory Format Example

length NO FLOAT 2.00

width NO FLOAT 1.00

height NO FLOAT 0.5

area NO FLOAT Can be derived from dimensions if not supplied 2.00

volume NO FLOAT Can be derived from dimensions if not supplied 1.00

style NO VARCHAR(50) Used for general purposes, grouping of products that

don't match categories

colour NO VARCHAR(50) red

size NO VARCHAR(50) XL

pickingInstruction NO VARCHAR(512)

packingInstruction NO VARCHAR(512)

userDefined1 Project

specific

VARCHAR(255)

userDefined2 Project

specific

VARCHAR(255)

userDefined3 Project

specific

VARCHAR(255)

userDefined4 Project

specific

VARCHAR(255)

userDefined5 Project

specific

VARCHAR(255)

Import Field Definition Detail

© OrderFlow Ltd. 2023 Page 56

Skip to content

PRODUCT ATTRIBUTE FIELDS

OrderFlow supports the import of arbitrary product attributes as name value pairs.

Order Import Fields

A more complete list of available order, shipment and order line fields used the Order Import operation are shown below:

Name Mandatory Format Example

name NO VARCHAR(120) card.tx.ref

title YES VARCHAR(120) Card Transaction Reference

value NO, but

normally

supplied

VARCHAR(5000) XYZ-123

Import Field Definition Detail

© OrderFlow Ltd. 2023 Page 57

Skip to content

ORDER FIELDS

Name Mandatory Format Example

externalReference YES VARCHAR(80) ORDREF_123000034

state Project

specific

One of a predefined list of values which may be

used to control how an order is processed.

Normally, it is best not to set this value, instead

leaving this job to the OrderFlow import mapping

script

created

partialOrder NO BOOLEAN Flag indicating whether order has been

divided upstream of OrderFlow.

false

paymentGatewayIdentifier NO VARCHAR(120) Used to pass a payment gateway

identifier to OrderFlow, if required

google_checkout

paymentTransactionInfo NO VARCHAR(1024) Environment dependent

placed NO TIMESTAMP Time the order was placed by the

customer

2014-11-31 13:24:06

authorised NO TIMESTAMP Time the payment was approved

(typically by a payment gateway)

2014-11-31 15:24:09

customerComment NO VARCHAR(1024) As discussed,

please fix UK plug

totalPriceNet NO FLOAT 10.20

totalPriceGross NO FLOAT 11.99

totalPriceTax NO FLOAT 1.79

totalTaxCode NO One of a list of values which may be used to

control the information shown on customer

paperwork

T0 , T1 , T2

Import Field Definition Detail

© OrderFlow Ltd. 2023 Page 58

Skip to content

Name Mandatory Format Example

shippingPriceNet NO FLOAT The net amount for the shipping charge for the

order

2.98

shippingPriceGross NO FLOAT 3.50

shippingTaxTotal NO FLOAT 0.52

shippingTaxCode NO One of a list of values which may be used to control the

information shown on customer paperwork

T0 , T1 , T2

goodsPriceNet NO FLOAT The price for the goods in the order. Includes the

goods portion of the shipping price; excluding the

shipping price

10.20

goodsPriceGross NO FLOAT 11.20

goodsTax NO FLOAT 0.52

goodTaxCode NO One of a list of values which may be used to control the

information shown on customer paperwork

T0 , T1 , T2

currency NO One of a predefined list of values (usually based on ISO

4217) which may be used to control the information

shown on customer paperwork

GBP , USD , CNY ,

EUR

currencyUnits NO One of a predefined list of values which may be used at

the point the order is imported

pounds

promotionCode NO VARCHAR(80) The promotion code for the order if

present

summer_2014

promotionDescription NO VARCHAR(120) The description of the promotion

Import Field Definition Detail

© OrderFlow Ltd. 2023 Page 59

Skip to content

Name Mandatory Format Example

source NO VARCHAR(255) A string which identifies the original source

of the order. Can be used within OrderFlow to remap order to

a different channel.

deliveryAddressLine1 NO VARCHAR(255)

deliveryAddressLine2 NO VARCHAR(255)

deliveryAddressLine3 NO VARCHAR(255)

deliveryAddressLine4 NO VARCHAR(255)

deliveryAddressLine5 NO VARCHAR(255)

deliveryAddressLine6 NO VARCHAR(255)

deliveryCountryCode NO VARCHAR(2)

deliveryPostCode NO VARCHAR(10)

deliveryContactName NO VARCHAR(255)

deliveryEmailAddress NO VARCHAR(50)

deliveryDayPhoneNumber NO VARCHAR(50)

deliveryEveningPhoneNumber NO VARCHAR(50)

deliveryMobilePhoneNumber NO VARCHAR(50)

deliveryFaxNumber NO VARCHAR(50)

deliveryCompanyName NO VARCHAR(120)

invoiceAddressLine1 NO VARCHAR(255)

invoiceAddressLine2 NO VARCHAR(255)

Import Field Definition Detail

© OrderFlow Ltd. 2023 Page 60

Skip to content

ORDER ATTRIBUTE FIELDS

OrderFlow supports the import of arbitrary order attributes as name value pairs.

Name Mandatory Format Example

invoiceAddressLine3 NO VARCHAR(255)

invoiceAddressLine4 NO VARCHAR(255)

invoiceAddressLine5 NO VARCHAR(255)

invoiceAddressLine6 NO VARCHAR(255)

invoiceCountryCode NO VARCHAR(2)

invoicePostCode NO VARCHAR(10)

invoiceContactName NO VARCHAR(255)

invoiceEmailAddress NO VARCHAR(80)

invoiceDayPhoneNumber NO VARCHAR(50)

invoiceEveningPhoneNumber NO VARCHAR(50)

invoiceMobilePhoneNumber NO VARCHAR(50)

invoiceFaxNumber NO VARCHAR(50)

invoiceCompanyName NO VARCHAR(120)

userDefined1 NO VARCHAR(255)

userDefined2 NO VARCHAR(255)

userDefined3 NO VARCHAR(255)

userDefined4 NO VARCHAR(255)

userDefined5 NO VARCHAR(255)

Import Field Definition Detail

© OrderFlow Ltd. 2023 Page 61

Skip to content

Name Mandatory Format Example

name NO VARCHAR(120) card.tx.ref

title YES VARCHAR(120) Card Transaction Reference

value NO, but

normally

supplied

VARCHAR(5000) XYZ-123

Import Field Definition Detail

© OrderFlow Ltd. 2023 Page 62

Skip to content

SHIPMENT FIELDS

Name Mandatory Format Example

externalReference NO VARCHAR(100) Can be omitted, in which case, order

reference will typically be used to provide implicit value.

ORDREF_123000034

paidFor NO BOOLEAN Flag indicating whether shipment payment has

been taken.

true

earliestShipDate NO DATETIME The earliest date the shipment should be shipped 2014-11-31

site NO VARCHAR(120) Optional field used to explicitly select site or

warehouseto be used for fulfilling shipment. Only used for

multi-site environments.

WAREHOUSE_1

priority NO INTEGER A positive number representing the priority of the

shipment

100

priorityName NO VARCHAR(30) A human-readable string representing the

priority

Urgent

weight NO FLOAT 100

weightUnits NO VARCHAR(10) The weight unit, which defaults to 'gram' gram

addressLine1 NO VARCHAR(255)

addressLine2 NO VARCHAR(255)

addressLine3 NO VARCHAR(255)

addressLine4 NO VARCHAR(255)

addressLine5 NO VARCHAR(255)

addressLine6 NO VARCHAR(255)

Import Field Definition Detail

© OrderFlow Ltd. 2023 Page 63

Skip to content

Name Mandatory Format Example

countryCode NO VARCHAR(2)

postCode NO VARCHAR(10)

contactName NO VARCHAR(255)

emailAddress NO VARCHAR(80)

dayPhoneNumber NO VARCHAR(50)

eveningPhoneNumber NO VARCHAR(50)

mobilePhoneNumber NO VARCHAR(50)

faxNumber NO VARCHAR(50)

companyName NO VARCHAR(120)

courier NO VARCHAR(120)

Allows the

courier to be set

directly. Not set

normally, rather

allow it to be

determined

dynamically via

script.

royalmail_ppi

deliveryInstruction NO VARCHAR(1024)

Any special

instruction to be

given to courier

as part of the

delivery.

Leave with neighbour

deliverySuggestionCode NO VARCHAR(120)

A hint or

suggestion to

the system

which can be

used to help

determine the

actual courier

and service.

combination to

be used

express

Import Field Definition Detail

© OrderFlow Ltd. 2023 Page 64

Skip to content

Note that if the shipment address fields or contact fields are set, they will override any values set for the delivery address fields in

the containing order. This allows multiple shipments within the same order to be directed to different addresses.

Name Mandatory Format Example

deliverySuggestionName NO VARCHAR(255) The name associated with the

delivery suggestion code.

Express

companyName NO VARCHAR(120)

pickingMode NO VARCHAR(120) Not set normally, rather allow it to be

determined dynamically via script

batch ,

individual

userDefined1 Project

specific

VARCHAR(255)

userDefined2 Project

specific

VARCHAR(255)

userDefined3 Project

specific

VARCHAR(255)

userDefined4 Project

specific

VARCHAR(255)

userDefined5 Project

specific

VARCHAR(255)

Import Field Definition Detail

© OrderFlow Ltd. 2023 Page 65

Skip to content

ORDER LINE FIELDS

Name Mandatory Format Example

product.externalReference YES VARCHAR(120) DVD-MATR

quantity YES INTEGER 2

description NO VARCHAR(1024) Typically used for a local language order line

description. If not set, then product description is used instead

totalPriceNet NO FLOAT 10.20

totalPriceGross NO FLOAT 11.99

totalPriceTax NO FLOAT 1.79

totalTaxCode NO VARCHAR(10) T0

unitPriceNet NO FLOAT 10.20

unitPriceGross NO FLOAT 11.99

Import Field Definition Detail

© OrderFlow Ltd. 2023 Page 66

Skip to content

Note that either the total price or the unit price should be specified. OrderFlow will not derive order line prices if none are

supplied, but it can, for example, derive a total price value from unit prices.

Prices are typically required for despatch note paperwork, and for international shipment, for customs documentation.

Name Mandatory Format Example

unitPriceTax NO FLOAT 1.79

unitTaxCode NO VARCHAR(10) T0

promotionCode NO VARCHAR(80)

The promotion

code for the

order if present

summer_2014

promotionPriceDescription NO VARCHAR(150)

The

description of

the promotion

price

£9.99 (was £12.99)

userDefined1 Project

specific

VARCHAR(255)

userDefined2 Project

specific

VARCHAR(255)

userDefined3 Project

specific

VARCHAR(255)

userDefined4 Project

specific

VARCHAR(255)

userDefined5 Project

specific

VARCHAR(255)

Import Field Definition Detail

© OrderFlow Ltd. 2023 Page 67

Skip to content
HTTP Example

An example HTTP request response pair shows how HTTP is used in the Product Import operation, described in in the next

section.

Note that in this example, the XML is passed in the body of the HTTP POST. In other POST operations, such as the Order

Cancellation operation, the body will consist of request parameters as URL encoded name value pairs.

Request

Note how the channel external reference is passed in using the channel header.

POST /rtd2-host/remoteorder/imports/importitems.xml HTTP/1.1

channel: MYCHANNEL

user: philz

password: cGhpbHo=

User-Agent: Jakarta Commons-HttpClient/3.1

Host: 127.0.0.1:8080

Content-Length: 967

<?xml version="1.0" encoding="UTF8"?>

<imports>

 <import type="product" operation="insert" externalReference="TEST_fullproduct">

 externalReference=TEST_fullproduct

 description=A description for the test product

 weight=100

 weightUnits=grams

 type=default

 quantityOnOrder=10

 imageReference=TEST_fullproduct.gif

 priceNet=10.50

 priceGross=11.50

 tax=1.50

 taxCode=T1

 currency=GBP

 currencyUnits=pounds

 userDefined1=User defined field value 1

 userDefined2=

 userDefined3=

 userDefined4=

 userDefined5=

 channel=MYCHANNEL

 type=default

 activated=true

 </import>

 <import type="product" operation="insert" externalReference="TEST_min_product">

 description=A description for the min product

 organisation=altco

 type=default

 activated=true

 </import>

 <import type="product" operation="insert" externalReference="TEST_global_product">

 externalReference=TEST_global_product

 description=A description for the global product

 type=default

 activated=true

 </import>

</imports>

HTTP Example

© OrderFlow Ltd. 2023 Page 68

Skip to content

In the example above the user name and password (in this case philz) are passed as headers, with the password being Base64

encoded. The other authentication method uses HTTP Basic Authentication (as described on Wikipedia). In this case, the user

name and password headers would be replaced by the following:

where cGhpbHo6cGhpbHo= is the base Base64 encoding of philz:philz .

Below we show both the normal and the error response to a this request.

Response

Normal Response

Notice how the result is returned in the body of the HTTP request, normally in XML format.

Error Response

Authorization: Basic cGhpbHo6cGhpbHo=

HTTP/1.1 200 OK

Content-Language: en-US

Content-Type: text/xml; charset=utf-8

Transfer-Encoding: chunked

Server: Jetty(6.1.14)

<?xml version="1.0" encoding="UTF-8"?>

<importResult>

 <importSuccesses>

 <import type="product" operation="insert" externalReference="TEST_fullproduct"

 entity="rtd.domain.database.Product" item="TEST_fullproduct"

 queryTime="2014-09-28 20:32:34.620" />

 <import type="product" operation="insert" externalReference="TEST_min_product"

 entity="rtd.domain.database.Product" item="TEST_min_product"

 queryTime="2014-09-28 20:32:34.636" />

 <import type="product" operation="insert" externalReference="TEST_global_product"

 entity="rtd.domain.database.Product" item="TEST_global_product"

 queryTime="2014-09-28 20:32:34.658" />

 </importSuccesses>

 <importFailures></importFailures>

</importResult>

HTTP/1.1 500 Internal Server Error

Content-Language: en-US

Content-Type: text/xml; charset=utf-8

Transfer-Encoding: chunked

Server: Jetty(6.1.14)

<?xml version="1.0" encoding="UTF-8"?>

<error>

 <message>

 <![CDATA[Cannot authenticate 'MYCHANNEL'.

 Does not match list of authenticated channel]]></message>

 <detail>

 <![CDATA[Cannot authenticate 'MYCHANNEL'.

 Does not match list of authenticated channel(rtd ...]]>

 </detail>

</message>

</error>

Response

© OrderFlow Ltd. 2023 Page 69

http://en.wikipedia.org/wiki/Basic_access_authentication

Skip to content

For most of the operations, an error which prevents successful completion of the operation results in a HTTP response with a

non-200 response code. In this case, more details can be extracted from the message and detail elements.

Error Responses

When an error occurs in one of the XML operations, OrderFlow will respond in a standard way. Typically, it will return a non 200

HTTP return code. For example, if the user is not authenticated then a 401 return code will be returned. If the server is unable to

complete the request due to some other application error, a 500 return code will be returned.

OrderFlow will return error text in the following format:

Error text is generated dynamically, with the intention being to return meaningful text that will help diagnose and correct

problems. This approach means that it is not possible to provide an exhaustive list of errors that may be returned by the API.

Examples of the most common errors found in the element of are API response are given below.

<?xml version="1.0" encoding="UTF-8"?>

<error>

 <message>high level error message</message>

 <detail>stack trace of error message</detail>

</error>

Response

© OrderFlow Ltd. 2023 Page 70

Skip to content

HTTP Code Error Text Explanation

HTTP 500

Internal Server

Error

Unable to load XML document from resource The message structure or XML

content cannot be parsed,

check the XML formatting.

HTTP 500

Internal Server

Error

Expecting value for 'channel' request header or parameter The channel value was not

found in the HTTP request

header

HTTP 500

Internal Server

Error

Cannot authenticate 'channelexample' Does not match list of

authenticated channel

The channel contained in the

HTTP request header is not

valid

HTTP 412

Precondition

failed

No user for supplied user name and password combination Username / password

combination is invalid

HTTP 200 Duplicate entity in import of order with reference: 03340002 Rejected

instance rtd.domain.database.OrderItem with reference '03340002'.

The order '03340002' already

exists for the channel

HTTP 200 No product found for external reference: WRONGPRODUCT. If this

product is present, make sure that it has been activated.

A product code contained

within the order is

unrecognized

HTTP 200 Failed to convert property value of type 'java.lang.String' to required

type 'java.lang.Double' for property 'totalPriceGross' nested exception is

java.lang.NumberFormatException For input string: '19t6.99'

The value 'totalPriceGross'

could not be stored as a

numeric value

HTTP 200 Unable to find any entity associated with identifier:ref:courier:worldship The courier identifier

“worldship” does not exist or is

inactive

Response

© OrderFlow Ltd. 2023 Page 71

	Introduction
	Guidelines for API Implementation
	System Availability
	Receipt of Message Retries
	Sending of Message Retries
	Order of Message Delivery
	Idempotency

	HTTP Authentication
	HTTP Basic Authentication
	Channel and Organisation Authentication

	Message Conventions
	HTTP Operation types
	PULL
	PUSH

	Operations TO OrderFlow (PULL)
	Import Operations
	Product Import
	Product Update
	Order Import
	Referring to Products
	Merging orders with product definitions

	Supplier Purchase Order Import
	Advanced Shipping Note (ASN) Import
	Returns Import
	Campaign Import
	Stock Move Task Import
	Imports using Custom Formats

	Product Operations
	Inventory Pull

	Order Operations
	Order Detail Pull
	Order Cancellation
	Temporary vs Permanent Cancellation
	Error Cases

	Order Line Cancellation
	Error Cases

	Hold Order
	Error Cases

	Release Order
	Error Cases

	Pending Shipments
	Shipments State Change
	Despatched Shipments Per Time Period
	Purchase Orders changed Within Time Period
	Applied Deliveries Per Time Period
	Applied Returns Per Time Period

	Operations FROM OrderFlow (PUSH)
	Product Operations
	Inventory Push
	Stock Change Push

	Delivery and Purchase Order Operations
	Delivery Line Push
	Delivery Push
	Purchase Order Push

	Order Operations
	Event Push

	Shipment Operations
	Payment Request
	Payment Response

	Return Operations
	Return Push

	Appendix
	Import Field Definition Detail
	Product Import Fields
	Product fields
	Product attribute fields

	Order Import Fields
	Order Fields
	Order attribute fields
	Shipment fields
	Order Line fields

	HTTP Example
	Request
	Response
	Normal Response
	Error Response
	Error Responses

