
Skip to content

OrderFlow Reporting Guide

OrderFlow Ltd.

Document Version: 4.2.4

Document Built: 2024-02-16

© OrderFlow Ltd. 2022

This document and its content is copyright of OrderFlow Ltd. All rights reserved.

You may not, except with our express written permission, distribute, publish or commercially exploit the content.

Any reproduction of part or all of the contents in any form is prohibited.

Page 1

Skip to content

Overview

An important distinguishing characteristic of any warehouse management system (WMS) is the degree to which it provides easy

access to information.

OrderFlow's reporting capability is critical in enabling it to achieve this objective. In addition to a wide range of built-in reports,

OrderFlow provides a powerful custom reporting capability. In fact, custom reports are used in OrderFlow in a wide variety of

situations:

management and information reports

paperwork generation reports, for example for despatch notes and courier labels

printable picking reports, for shipment batches and for stock move tasks

strategy reports used to determine the source or target locations and quantities for stock move tasks.

In addition, OrderFlow's reporting framework is used throughout the system to generate views and fragments for both the

desktop and mobile versions of the application, providing easy visual access to key performance indicators. These collections

views can be easily enhanced, modified or extended by suitably trained technical users.

In all cases, reports can be added to the system 'on the fly'. There is no need for a new software build or system restart when

adding reports.

•

•

•

•

Overview

© OrderFlow Ltd. 2022 Page 2

Skip to content
Custom Reports

OrderFlow includes a set of built-in reports which cover typical management information requirements. However, because the

system can be used in so many different ways, needing to cover such a disparate range of requirements, an extended custom

reporting facility is essential.

Custom reports can only be created by users with the appropriate administrator access to the system.

These reports can be created in a variety of formats. The most common formats are CSV (Comma-Separated Values) and XLS

(Microsoft Excel spreadsheets). These serve the needs for users who are looking to extract unformatted or raw data from the

system.

For printable custom reports that need to be generated with pixel-perfect accuracy, OrderFlow uses Jasper Reports, the leading

open-source reporting technology. Typical examples of these kinds of reports are barcode label generation reports, despatch

notes and picking reports.

Custom vs Built-in Reports

It is helpful to explain exactly what is meant by a custom report, and its cousin, the built-in report:

Built-in Reports

Built-in reports are reports which are provided with the software. They are actually delivered in files included as part of the

OrderFlow build.

Built-in reports are supported in the sense that they will be kept up to date with changes to OrderFlow report. For example, if an

OrderFlow database table's column is renamed, then built-in reports which use this column will be changed accordingly.

Built-in reports are developed within the OrderFlow codebase and regression tested with every new OrderFlow release. If a built-in

report does not work as it should, the problem will be treated as a bug and the work required to fix it will not be chargeable.

Built-in reports cannot be modified directly. However, these reports can be overridden. By overriding a built-in report, the report

administrator effectively creates a custom report with the intention of reusing some elements of the built-in report, but modifying

other elements. For example, if the administrator wants to slightly change the report display, but retain the report data source,

this can be achieved by overriding a built-in report.

Note that once a built-in report has been overridden, it effectively becomes a custom report.

Custom Reports

Custom reports are reports which are added to the operating environment. They are in fact installed in the OrderFlow database.

Note that custom reports are not supported in the same way as built-in reports.

In general, OrderFlow developers will try to allow for any negative impact that system upgrades may have on custom reports, and

will, where possible, apply changes automatically to custom reports to accommodate these changes.

However, no guarantee can be provided that custom reports will never be broken by a system change. In our example of a column

change above, custom reports, which rely on the old column name, will no longer work after the column change unless they are

manually modified.

Custom Reports

© OrderFlow Ltd. 2022 Page 3

Skip to content

Custom reports can be developed by the OrderFlow support team or by any OrderFlow user with the necessary privileges. They

are not regression tested against new OrderFlow releases - bug fixes and change requests will be charged on a time and

materials basis. Custom reports should always be tested in the OrderFlow staging environment before new OrderFlow releases

are used in a live environment.

Custom vs Built-in Reports

© OrderFlow Ltd. 2022 Page 4

Skip to content

Custom Data Reports

The most common custom reports are data reports which are aimed simply at extracting data from the system for subsequent

analysis and manipulation. These reports are also the simplest reports in that they do not involve any complex presentation; the

output tends to be simple tabular formats such as CSV or XLS.

Conceptually, any report involves two elements: a data source or query, which is used to extract the relevant data, and a design,

which is used to render the report in the relevant format.

Report authors need to have the following knowledge:

familiarity using SQL

an understanding of the OrderFlow application, and knowledge of the relevant tables in the OrderFlow database schema

for CSV-based reports, knowledge of how to use the [FreeMarker(http://freemarker.org/) templating engine, which can be

easily acquired from the FreeMarker web site.

Data Sources

OrderFlow supports the use of a variety of data sources. The most commonly used are based on Structured Query Language

(SQL), allowing report administrators to design reports which safely query data directly from the OrderFlow database.

An example of an SQL statement is shown below:

The example above is used to query changes. Of course, familiarity with the OrderFlow database schema is also necessary for

writing non-trivial reports.

•

•

•

SELECT

 p.externalReference AS 'product',

 p.description AS 'description',

 s.externalReference AS 'site',

 o.externalReference AS 'organisation',

 l.externalReference AS 'location',

 lt.externalReference AS 'locationtype',

 lt.damaged AS 'damagedLocation',

 sc.id AS 'id',

 sc.type AS 'adjustment_type',

 sc.newQuantity AS 'new_quantity',

 sc.previousQuantity AS 'previous_quantity',

 sc.changeQuantity AS 'change_quantity',

 sc.user AS 'user',

 sc.created AS 'timestamp',

 sc.note AS 'comment'

FROM stock_change sc

JOIN product p ON p.id = sc.productId

JOIN organisation o ON o.id = p.organisationId

JOIN location l ON l.id = sc.locationId

JOIN location_type lt ON lt.id = l.logicalTypeId

JOIN site s ON s.id = l.siteId

WHERE

 (1=1)

AND

 (sc.type in ('positive_adjustment','negative_adjustment')

 OR

 (sc.type in ('move_in','move_out') and lt.damaged = true))

AND p.deleted = FALSE

#[organisations:p]

ORDER BY sc.id

Custom Data Reports

© OrderFlow Ltd. 2022 Page 5

Skip to content

Parameters

Reports can have parameters to restrict the data to be returned. Typical parameters include those for the site, channel or

organisation(s) for which the data should apply. It is also very common to restrict the report parameters by date range.

In the example below, the parameters from_date and to_date are used to restrict a data by date range. The parameters used in

this way need to be declared in the report's Parameter Source field. For more details on how this is done, see the Report

Configuration GUI section.

An example parameter declaration is shown below:

The example above supports a required organisation, from date and to date parameters, and an optional product reference

parameter.

More detail on the use of date parameters are contained in the Date Parameters section.

The parameters are used directly in the SQL of custom reports, as is shown in the example below.

Note that three parameter values are very commonly used in multi-channel and multi-site environments:

channel_id : used to filter report data by channel

organisation_id : used to filter report data by organisation

site_id : used to filter report data by site

Note that parameters can be required or optional. When using optional parameters, it is often useful to inclusion of the parts of

the SQL conditional on whether a value has been supplied for the parameter.

In the example below, the clause p.externalReference = ? will only be added to the SQL if a value is supplied for the

productReference parameter.

Note that in the above example, the ${productReference} segment is translated into SQL that uses bound parameters, which

can be beneficial for query performance. In the example above, the SQL used after preprocessing would be

p.externalReference = ? . At times, it is more convenient just to insert the parameter literal. This can be done using the

literal: prefix.

In the example below, if the value SKU123 is supplied for the parameter productReference , then the SQL segment

would be translated into p.externalReference like '%SKU123%' before being executed.

 organisation_id:Organisation,from_date:From date:required:datetime, to_date:To

date:required:datetime,productReference:Product Reference:optional:string

SELECT externalReference from order_item o

WHERE

date(o.completed) >= ${from_date}

AND

date(o.completed) <= ${to_date}

•

•

•

#[include:productReference]p.externalReference = ${productReference}#[include]

#[include:productReference]p.externalReference like '%${literal:productReference}%'#[include]

Custom Data Reports

© OrderFlow Ltd. 2022 Page 6

Skip to content

PARAMETER FORMAT AND TYPES

Parameters are defined in reports using the following format:

Identifier:Name:required or optional:type:Default value

Note that of the above values, the required or optional and the type values can be determined implicitly:

if no required or optional value is set, then the parameter is assumed to be optional.

if no type is set, the type is assumed to be string .

Name Example Description

Identifier productReference The identifier which is used in the report, typically as a parameter in the SQL itself.

Name Product

Reference

The human readable name for the parameter, which appears as the name of the

parameter when parameter values need to be captured on the report launching

screen.

Required or

option

required If present, must be either required or optional .

Type string The type of the parameter.

Default

Value

123 The default value for the parameter is none is supplied by the user.

•

•

Custom Data Reports

© OrderFlow Ltd. 2022 Page 7

Skip to content

RESERVED PARAMETER CONVENTIONS

The following are reserved parameters that define a convention that should be followed.

Note that these parameters conventions should be closely observed for reports that are to be used as a basis for periodic

reports.

Type Usage

string Free text entry values

password Password entry values

integer Standard integer values

date Dates without time component

datetime Dates with time component

boolean Simple true or false

double Double-precision floating point (decimal) values

float Single-precision floating point (decimal) values

long Long integer values

Custom Data Reports

© OrderFlow Ltd. 2022 Page 8

Skip to content

Name Title Usage

channel_id Channel, Used to filter data by channel. Used in channel scoped periodic reports.

organisation_id Organisation, Used to filter data by organisation. Used in organisation scoped periodic

reports.

site_id Site, Used to filter data by site. Used in site scoped periodic reports.

from_date From Date, "Used to define the starting point for date-based filters. Suitable for daily, weekly

and monthly periodic reports.

to_date From Date, "Used to define the end point for date-based filters. Suitable for daily, weekly and

monthly periodic reports.

from_datetime From Date, "Used to define the starting point for date-based filters. Suitable for hourly, daily,

weekly and monthly periodic reports.

to_datetime From Date, "Used to define the end point for date-based filters. Suitable for hourly, daily,

weekly and monthly periodic reports.

Custom Data Reports

© OrderFlow Ltd. 2022 Page 9

Skip to content

DATE PARAMETERS

The main thing to understand about the semantics of date parameters is the use of the to date or timestamp.

for date parameters, the from and to are both inclusive. So if the to date is 31/01/2016, then the report data should include

all data that is on that date, regardless of what time of day this occurred.

for date time parameters, the from date is inclusive but the to date is exclusive. So if you want to include all data on

31/01/2016, the to date will need to be defined up to midnight on 01/02/2016.

Date Parameters

SQL

The inclusive to date is captured in the SQL by a combination of the use of the date() function and the <= sign in before the $

{to_date} .

Parameters

Note that the date parameter is of type date .

Date Time Parameters

SQL

The exclusive to datetime is captured using a < sign. There is no need for any function to be applied to the compared field value.

Note that datetime parameters are only suitable for date fields in which the values are captured as date times (with the date and

time element in the stored data).

Parameters

Note the use of the datetime type, which prompts for time element be captured as input when running a report with this

parameter.

•

•

date(datefield) >= ${from_date} and

date(datefield) <= ${to_date}

from_date:From date:required:date, to_date:To date:required:date

datefield >= ${from_datetime} and

datefield < ${to_datetime}

from_datetime:From date:required:datetime, to_datetime:To date:required:datetime

Custom Data Reports

© OrderFlow Ltd. 2022 Page 10

Skip to content

DROP DOWN PARAMETERS

On occasions it is necessary for the selectable parameter values to be from a pre-configured list. This is possible from OrderFlow

versions 4.0.8.1 and later.

The setup of these categories is done as below:

Note that in the example above, the operator will need to set a category parameter, and either the value 'cat1' or 'cat2' will be

passed to the report query.

This mechanism is a simple way to restrict the parameter choices available to a user. However, it does require each parameter

choice to be preset in the report configuration.

In the next section, we show how to support pre-selectable options that are themselves determined from a report, which will be

useful in more dynamic environment.

site_id:Site, organisation_id:Organisation, include_unavailable_products:Include unavailable

products:optional:boolean, category:Category:required:string:(cat1=Category 1|cat2=Category 2)

Custom Data Reports

© OrderFlow Ltd. 2022 Page 11

Skip to content

REPORT-BACKED PARAMETERS

It is possible to have parameters set up on OrderFlow that themselves use reports to specify default values.

For example, for areas, a report named 'area_options' may be used. In this case, an example report parameter will take the form:

Note that the null value in this case indicates no default value.

It is worth bearing in mind that if the report-back parameter is required, then any other parameter that specifies the scope of the

report (specifically site_id , organisation_id or channel_id) will also need to be set as mandatory. In this case, the scope-

defining parameter values will need to be selected before the report-backed options are presented to the user.

All of this is necessary because the report-backed options typically depend on the current report scope. For example, the

selected areas will need to depend on the the selected site for the report.

organisation_id:Organisation:required,site_id:Site:required, area_id:Area:required:integer:null:

'area_options'

Custom Data Reports

© OrderFlow Ltd. 2022 Page 12

Skip to content

Report 'Hardening'

It is sometimes required to 'harden' a report so that it does not expose data relating to organisations, channels or sites to which

the user does not have access, for obvious reasons.

This is achieved by adding particular directives to a report's SQL data source. The directives each take the following form:

For example, the following directive is present in the example SQL statement above:

where p is the alias for the organisation-aware product table.

As well as for organisations, directives should be declared where required for channels and sites. The syntax for these

expressions follows that used for organisations:

These directives should be placed in the WHERE clause of a query.

Note that if a channel_id , organisation_id or site_id parameter is present in the report configuration, the relevant value

supplied by the user will automatically be applied when the hardening expression is expanded during report execution.

On creation and update, if a report is active then its SQL data source is checked against its 'Hardening Requirement' value, to

ensure that it contains the necessary directives.

#[<*entity to restrict*>s:<*alias of restricted-entity-aware table in 'from' clause*>]

#[organisations:p]

#[channels:channelAwareEntityAlias]

#[sites:siteAwareEntityAlias]

Custom Data Reports

© OrderFlow Ltd. 2022 Page 13

Skip to content

Design

Regarding the design element of report generation, the simplest format is XLS (the Microsoft Excel spreadsheet format).

OrderFlow supports the creation of Excel reports simply by listing the column headers. For the SQL above, the corresponding

design for an Excel format report would be:

Example output:

The other principal format for data-centric reports is CSV. For these, the tool of choice is the open source FreeMarker templating

engine. The equivalent CSV-based design for the Excel formatted report above is shown below:

Example output in CSV:

As the examples above show, CSV reports require slightly more effort to set up than spreadsheet-based reports. However, they

do allow for fine-grained control of the formatting of certain data (such as dates) in a way that is not supported with Excel-based

reports. The output data can also be previewed on screen prior to download, a capability that is not supported with Excel-based

reports.

site,adjustment_type,location,product,change_quantity,previous_quantity,new_quantity,user,timestamp,comment

site,adjustment_type,location,product,change_quantity,previous_quantity,new_quantity,user,timestamp,comment

<#list results as result>

${result.site},${result.adjustment_type},${result.location},${result.product},${result.change_quantity},$

{result.previous_quantity},

${result.new_quantity},${result.user},${result.timestamp?string('yyyy-MM-dd HH:mm:ss')},${result.comment}

</#list>

site,adjustment_type,location,product,change_quantity,previous_quantity,new_quantity,user,timestamp,comment

swindon,negative_adjustment,location_154,iPhone3GS,-1,300,299,charlie,2014-01-31 10:10:56,Handheld stock

correction

swindon,negative_adjustment,cart3,TRAN805410,-16,16,0,charlie,2014-03-03 13:48:24,Empty cart adjustment

swindon,negative_adjustment,cart1,TRAN805410,-8,8,0,charlie,2014-03-03 13:48:53,Empty cart adjustment

swindon,negative_adjustment,cart1,TRAN805415,-11,11,0,charlie,2014-03-03 13:48:53,Empty cart adjustment

swindon,negative_adjustment,cart1,TRAN805422,-6,6,0,charlie,2014-03-03 13:48:54,Empty cart adjustment

swindon,negative_adjustment,cart1,TRAN805423,-11,11,0,charlie,2014-03-03 13:48:54,Empty cart adjustment

swindon,negative_adjustment,cart1,TRAN805432,-11,11,0,charlie,2014-03-03 13:48:54,Empty cart adjustment

swindon,negative_adjustment,cart2,PP1500,-2,2,0,charlie,2014-03-03 13:49:31,Empty cart adjustment

swindon,negative_adjustment,CrossDock2,PP1430,-10,10,0,charlie,2014-03-03 18:21:24,Reversed previous change

swindon,negative_adjustment,CrossDock2,PP1430,-10,10,0,charlie,2014-03-03 18:24:26,Reversed previous change

swindon,negative_adjustment,location_028,MicroUsbBlackberry,0,200,200,charlie,2014-03-24 18:53:17,Handheld

stock correction

swindon,negative_adjustment,cart2,TRAN805410,-4,4,0,charlie,2014-05-19 13:46:55,demo

swindon,negative_adjustment,cart1,TRAN805412,-7,7,0,charlie,2014-05-19 16:14:38,Empty cart adjustment

Custom Data Reports

© OrderFlow Ltd. 2022 Page 14

Skip to content

OrderFlow Report Administration

In this section we describe how the report administration functionality can be used in OrderFlow.

When creating a new custom report, four options are available:

create a new custom report from scratch. This involves the most effort.

clone an existing report. The report that you clone can be either a built-in report or a custom report. When cloning an existing

report, a new report is created with a name and identifier that is different from the old one, but with other properties (e.g. the

data source) that are the same as the old one. Cloning a report provides a convenient starting point for creating the new

custom report, as it is usually possible to find an existing report on the system which has similar characteristics to the one

you are attempting to create.

override an existing built-in report. Note that when overriding a built-in report, you are not actually creating a new one.

Instead, you are making a change to the way the existing report appears or behaves. Essentially, you are creating a custom

report from an existing built-in report, making it not automatically supported by the system.

import an existing report. When copying a report from another environment (e.g. from test to live), the most convenient way

to do so is to import the report. This process allows you to import all of the configuration associated with a report, in a single

operation, rather than having to copy individual fields manually. This makes the process of migrating a report much quicker

and less error-prone.

•

•

•

•

OrderFlow Report Administration

© OrderFlow Ltd. 2022 Page 15

Skip to content

Report Configuration GUI

The report configuration GUI supports the creation and modification of custom and overridden reports on OrderFlow. This section

describes the purpose and usage of the main editable fields.

An example of the report configuration screen for an existing report is shown below.

Unique Key

The reference that is used in other parts of the application to identify the report. As the name suggests, this field must contain a

unique value.

Module

OrderFlow Report Administration

© OrderFlow Ltd. 2022 Page 16

Skip to content

Defines a Java module to look up for a report. This module must have visibility to the Data Provider Class. By default the rtd2-

reports-standard module is used.

Sub-system

A drop-down menu that, along with individual user configuration, defines the visibility of the report, i.e. which sub-system

(Despatch, Warehouse, Import, etc.) has access to it.

Report Type

As the name suggests, defines the type of the report - Despatch note, Admin, Barcode, Periodic, etc.

Report Name

The name the user sets to easily identify the report. This differs from Unique Key such that the unique key is used by the

application, whereas the report name helps the user to distinguish between different reports.

Description

A description of what the report does and/or how it is used or any notes regarding it.

Is Top Level Report

A check box, which determines whether the current report is a main report or a sub-report. If it is a sub-report (i.e. the check box

is not ticked), then it will not appear in the main list of reports, but it can be used by top level reports.

Is Active

Self-explanatory: determines whether the report is active, i.e. if it can be used or not.

Data Provider Class

The Java class, used to provide data for the report. The most commonly used data provider is

rtd.reports.dataprovider.SqlDataProvider, which is used to return a list of rows using a single SQL query.

Message Bundle

A more advanced field - it is useful when producing multi-language reports (e.g. despatch notes). After uploading a message file

resource, it can be used as a base key for looking up message resources.

Data Source

Used to query data from the OrderFlow database by using SQL statements. See Data Sources above for more detail on SQL

queries in reports. Parameters can also be defined in this field, which are basically user inputs that help when querying the

database.

Parameter Source

Used to define the source of any parameters that the query uses. These parameters are entered once a report is launched. The

format, used to determine parameters is as follows:

Each element is divided by a colon and the type is a string by default. The default-value can be omitted. The name element is a

reference to the name, used in the SQL query in the Data Source field. An example parameter source value is:

name:title:optional/required:type:default-value

OrderFlow Report Administration

© OrderFlow Ltd. 2022 Page 17

Skip to content

Primary Format

The default format, in which the report is executed. If multiple formats are supported by the same report, you can define which is

the default format by using this field. Once the report is launched, this can be changed, so a different format is used. In the

example below csv is the default format, but just before executing the report, the format can be changed to xls if desired.

Supported Formats

Determines the formats in which a report can be produced.

Report Designs

These specify the design(s) of the report, depending on the format that is used. See design above for more detail on formatting

XLS and CVS reports and report design below for JRXML.

Role Detail

These properties are used to restrict access to the report to different user groups - e.g. Packer, Stock handler, Import operator.

from_date:From date:required:date, to_date:To date:required:date, channel_id:Channel, site_id:Site

OrderFlow Report Administration

© OrderFlow Ltd. 2022 Page 18

Skip to content

Importing and Exporting Reports

In order to export a report, simply click on the Export button at the bottom of the report configuration screen of the report to be

exported:

A pop-up dialog then opens with all the configurations of the report, encoded in an xml format. Select and copy all the contents of

the text in the text box.

Once this is done you need to make sure that the target report is in place. If necessary, you may need to create a new report,

either by creating a new report from scratch or by the easier method of cloning an existing report. Make sure that the Unique Key

of the two reports match, or the attempt to import will be rejected.

Once the target report is ready, you can import the contents of the source report from the browser's clipboard in the following

way. First, click on the Import button at the bottom of the screen. This opens a dialog, similar to the export one, but with a

warning message and an empty text box. To import the report, simply paste the contents from the export pop-up into the text box

and click Import Config, as shown below.

OrderFlow Report Administration

© OrderFlow Ltd. 2022 Page 19

Skip to content

If successful, a small information window will pop at the top right corner of the screen, indicating that the import has been

successful.

OrderFlow Report Administration

© OrderFlow Ltd. 2022 Page 20

Skip to content

Custom Report Development Phases

A typical custom report will be developed in the phases described below.

Use a database query editor to experiment with and subsequently refine the query being used to generate the report data.

Clone or override an existing report to create the configuration entry which the report is to use. (Save the cloned report

before proceeding.)

Create the report design.

Insert the report data source (query), adding any additional parameters necessary.

Create the parameter source to capture input parameters for the report.

Activate the report. Once activated, the report can be run using the Launch report link on the report configuration screen.

The screenshot below illustrates where steps 3-6 can be configured from.

1.

2.

3.

4.

5.

6.

Custom Report Development Phases

© OrderFlow Ltd. 2022 Page 21

Skip to content

Once the report has been created, it can be iteratively refined by editing, then saving the report configuration, then rerunning the

report. It is quite convenient to have two browser tabs open simultaneously to serve this purpose.

Formatted Printable Reports

The custom reports we have described in the previous section are data reports, typically in an CSV or XLS format.

OrderFlow also supports a mechanism to publish and run printable reports, such as barcode labels, picking reports and despatch

notes, These reports can be produced to pixel-perfect accuracy for Jasper Reports, the world's most popular open source

reporting framework.

The design for the report can be produced using the iReport tool, provided for free by JasperSoft Corporation, the company

behind Jasper Reports. In addition, JasperSoft now provide an alternative design tool, called Jasper Studio. Both tools provide a

Formatted Printable Reports

© OrderFlow Ltd. 2022 Page 22

http://community.jaspersoft.com/project/ireport-designer
http://community.jaspersoft.com/project/jaspersoft-studio%3E

Skip to content

'what you see is what you get' (WYSIWYG) editor which allows you to position report elements exactly as they need to appear on

the output document.

This document does not cover in any detail the mechanics of JasperReports, a powerful, feature-rich piece of software but also

one with quite a steep learning curve for the uninitiated. However, we will make comments on particular aspects of

JasperReports, relevant to the way it has been used in OrderFlow, for example, in areas such as subreports, handling of fonts and

handling of images.

For serious usage, we recommend purchasing a book on JasperReports. We also recommend that before attempting to produce

printable paperwork using JasperReport, you familiarise yourself with the custom reports framework, ideally through creation of

a few custom reports.

Despatch notes and other printable reports use the same reporting framework as the OrderFlow custom reports. However, they

differ in two key respects:

custom reports typically use some form of the SQL data provider, which supports the extraction of data for the report using

SQL. For despatch note reports, the data is provided as part of a more wide-ranging business process that involves other

changes to the shipment (such as the creation of print item and shipment document entries).

the majority of the custom reports output data rather than a printable document. For JasperReports-based paperwork, the

design of the report is the JRXML document, which is an XML file that can be most easily edited using a design tool such as

iReport.

•

•

Formatted Printable Reports

© OrderFlow Ltd. 2022 Page 23

Skip to content
Despatch Notes

As part of the pack and despatch process, customer paperwork invariably needs to be generated to be included with the outgoing

shipment. This paperwork is typically referred to as the 'despatch note', and sometimes as the 'customer invoice'. The despatch

note will typically include:

the name and address of the recipient.

details on the merchant, including site and return addresses, telephone numbers, etc.

details on the lines despatched for the order, including product name, quantity, and often pricing information.

details on the total price of the order, including shipping costs.

instructions, plus terms and conditions, on returns.

Despatch notes and other paperwork can be produced to pixel-perfect accuracy in OrderFlow. OrderFlow achieves this by building

on the capabilities of Jasper Reports, the world's most popular open source reporting framework.

Despatch notes and other printable reports use the same reporting framework as the OrderFlow custom reports. However, they

differ in two key respects:

custom reports typically use some form of the SQL data provider, which supports the extraction of data for the report using

SQL. For despatch note reports, the data is provided as part of a more wide-ranging business process that involves other

changes to the shipment (such as the creation of print item and shipment document entries).

the majority of the custom reports output data rather than printable documents. For JasperReports-based paperwork, the

design of the report is the a JRXML document, which is an XML file that can be most easily edited using a design tool such

as iReport.

Report Design

The report design document for an OrderFlow despatch note is a JRXML file, the standard design file format for JasperReports.

An example is shown below:

•

•

•

•

•

•

•

<?xml version="1.0" encoding="UTF-8"?>

<jasperReport xmlns="http://jasperreports.sourceforge.net/jasperreports"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://jasperreports.sourceforge.net/jasperreports

 http://jasperreports.sourceforge.net/xsd/jasperreport.xsd"

name="Sample Despatch Note" language="groovy"

pageWidth="595" pageHeight="842" columnWidth="567"

leftMargin="14" rightMargin="14" topMargin="14" bottomMargin="14"

isFloatColumnFooter="true" uuid="cccea0e2-75fa-4d3e-a0f0-91c946de3713">

 <style name="default" isDefault="true" fill="Solid"

 hAlign="Left" vAlign="Top" fontName="Verdana" fontSize="9"

 isBold="false" isItalic="false" isUnderline="false"

 isStrikeThrough="false"/>

<parameter name="logo" class="java.lang.String"/>

<parameter name="shipmentReference" class="java.lang.String"/>

<parameter name="totalNetPrice" class="java.lang.String"/>

...

<field name="sku" class="java.lang.String"/>

<field name="description" class="java.lang.String"/>

 ...

<pageHeader>

Despatch Notes

© OrderFlow Ltd. 2022 Page 24

Skip to content

 <band height="265">

 <image isLazy="true" onErrorType="Blank">

 <reportElement uuid="ea357aa3-012a-494c-b13b-6ebca85b87ae"

 x="0" y="28" width="215" height="25"/>

 <imageExpression><![CDATA[$P{logo}]]></imageExpression>

 </image>

 <staticText>

 <reportElement uuid="a0472efb-bc4e-4b88-9ac8-2046407d9738"

 style="default" x="306" y="45" width="96" height="12"/>

 <textElement textAlignment="Right" markup="none">

 </textElement>

 <text><![CDATA[Shipment Reference:]]></text>

 </staticText>

 <textField isBlankWhenNull="true">

 <reportElement uuid="7d8c0c59-0c87-40a8-b854-193cb2927209"

 style="default" mode="Transparent" x="410" y="45"

 width="157" height="12" forecolor="#000000"/>

 <textElement verticalAlignment="Middle">

 </textElement>

 <textFieldExpression><![CDATA[$P{shipmentReference}]]></textFieldExpression>

 </textField>

 ...

 </band>

</pageHeader>

<columnHeader>

 <band height="25">

 <staticText>

 <reportElement uuid="146763e7-e3be-44b9-9db4-62795c6a4ab3"

 style="default" positionType="FixRelativeToBottom"

 x="2" y="5" width="63" height="12"/>

 <textElement>

 </textElement>

 <text><![CDATA[SKU]]></text>

 </staticText>

 ...

 <line>

 <reportElement uuid="00c99d61-c45d-44c9-9f6c-05dede5c0027"

 style="default" positionType="FixRelativeToBottom"

 x="0" y="20" width="565" height="1"/>

 </line>

 </band>

</columnHeader>

<detail>

 <band height="15">

 <textField isStretchWithOverflow="true">

 <reportElement uuid="a100709f-94d1-420a-b8fc-d53015ab675f"

 style="default" x="0" y="2" width="60" height="11"/>

 <textElement>

 </textElement>

 <textFieldExpression><![CDATA[$F{sku}]]></textFieldExpression>

 </textField>

 ...

 </band>

</detail>

<columnFooter>

 <band height="103">

 <staticText>

 <reportElement uuid="c53ae53b-0090-467a-b686-b1537bee6245"

 style="default" x="348" y="37" width="111" height="13"/>

 <textElement textAlignment="Right">

 </textElement>

 <text><![CDATA[Total Net Price:]]></text>

 </staticText>

 <textField isBlankWhenNull="true">

 <reportElement uuid="7d8c0c59-0c87-40a8-b854-193cb2927209"

 style="default" mode="Transparent"

Report Design

© OrderFlow Ltd. 2022 Page 25

Skip to content

The JRXML document contains both precise positioning information, and declarations of parameters and fields, for which

information is extracted with the help of various expressions (explained in detail further in this chapter).

Editing this document directly by hand is generally not necessary. As with any formatted printable report on OrderFlow, the

design be edited via a drag-and-drop interface using the freely available iReport or Jasper Studio tools.

Styles

Jasper Reports has the option to create styles, which help with the design of the report. Instead of entering the same property

values for different elements throughout the report, you can simply create a single style and apply it to all required elements. In

the example above, the style, called default, is defined at the top of the JRXML file and is used for all text fields and labels. Then

only the properties, which differ from that style, are added in (e.g. the company name font size being bigger, some labels being

right-aligned, elements being bold, etc.)

This is useful when making sure that the formatting throughout the report is identical, also saves time when adding in new fields

or editing existing ones and automatically ensures that the code in the JRXML is as clean as possible.

 x="464" y="37" width="103" height="14" forecolor="#000000"/>

 <textElement verticalAlignment="Middle"/>

 <textFieldExpression><![CDATA[$P{totalNetPrice}]]></textFieldExpression>

 </textField>

 ...

 </band>

</columnFooter>

</jasperReport>

Report Design

© OrderFlow Ltd. 2022 Page 26

http://community.jaspersoft.com/project/ireport-designer
http://community.jaspersoft.com/project/jaspersoft-studio

Skip to content

Parameters and Fields

The despatch note generation environment will prepare the data, required to render the report. Typically, a despatch note is

generated for each shipment.

Data is provided to the report in the form of parameters (for non-repeating data, such as the order header and shipment details)

and fields (for repeating data, such as order lines).

Data can be extracted from any of these parameters or fields (a number of which are declared in the despatch note design

example) using Java or Groovy expressions. While it is possible to access the OrderFlow data model directly from within the

despatch note JRXML file, this is not desirable, as it means that the JRXML designer also needs to have a knowledge of scripting,

a wider and technically more demanding skill set.

Instead, the recommended approach is to explicitly declare in the JRXML all of the parameters and fields individually as simple

values, preferably just as strings. The JRXML file can in this way be limited purely to design.

This allows the report design to be easily edited by anyone with little or no programming knowledge, with data extraction left to

programmers or the OrderFlow Technical Support team.

To facilitate this, OrderFlow provides a mechanism for populating the parameters and fields through a separate script outside of

the JRXML.

By convention, this is done in two mapping files, for parameters and fields respectively, which by convention are named using

based on name of the report (the JRXML file), followed respectively by _parameters.xml or _fields.xml.

The organisation of these files in a built-in despatch note report in the Eclipse IDE is shown below.

Parameters and Fields

© OrderFlow Ltd. 2022 Page 27

Skip to content

Parameters and Fields

© OrderFlow Ltd. 2022 Page 28

Skip to content

The same entries are visible on the OrderFlow GUI as shown below:

Note that the JRXML fields and parameters are declared individually in the JRXML, as in the example below:

The parameters are declared in the JRXML file and used in the design document itself. For example, the shipmentReference

parameter value will be accessible in the document using a declaration such as:

In the next sections, we describe how these field and parameter values are populated through scripts.

<parameter name="formattedAddress" class="java.lang.String"/>

<parameter name="returnsAddress" class="java.lang.String"/>

<parameter name="returnsURL" class="java.lang.String"/>

<parameter name="returnsInformation" class="java.lang.String"/>

<parameter name="vatNumber" class="java.lang.String"/>

<parameter name="telephone" class="java.lang.String"/>

<parameter name="email" class="java.lang.String"/>

<parameter name="orderDate" class="java.util.Date"/>

<parameter name="shipmentReference" class="java.lang.String"/>

<parameter name="contact" class="java.lang.String"/>

<parameter name="logo" class="java.lang.String"/>

<parameter name="totalNetPrice" class="java.lang.String"/>

<parameter name="tax" class="java.lang.String"/>

<parameter name="totalShippingPrice" class="java.lang.String"/>

<parameter name="totalPrice" class="java.lang.String"/>

<parameter name="companyName" class="java.lang.String"/>

<parameter name="organisationName" class="java.lang.String"/>

<field name="quantity" class="java.lang.Integer"/>

<field name="sku" class="java.lang.String"/>

<field name="description" class="java.lang.String"/>

<field name="unitLinePrice" class="java.lang.String"/>

<field name="totalLinePrice" class="java.lang.String"/>

<textFieldExpression><![CDATA[$P{shipmentReference}]]></textFieldExpression>

Parameters and Fields

© OrderFlow Ltd. 2022 Page 29

Skip to content

Parameters

The parameter values for a despatch note report are extracted using scripts defined in the parameters mapping file, already

introduced earlier. An example is shown below.

<fieldmapper>

 <mappings>

 <mapping to="formattedAddress">

 def shipment = input.shipment;

 return rtd.domain.Address.formattedAddress(shipment.implicitAddress, '\n');

 </mapping>

 <mapping to="shipmentReference">

 return input.shipment.externalReference

 </mapping>

 <mapping to="orderDate">

 def date = input.shipment.orderItem.placed;

 if (date != null) {

 return date;

 }

 return input.shipment.orderItem.created;

 </mapping>

 <mapping to="logo">

 def channel = input.shipment.orderItem.channel.externalReference;

 return 'logos/' + channel + '.png';

 </mapping>

 <mapping to="returnsAddress">

 def sharedProperties = input.sharedProperties;

 rtd.reports.util.ReportUtils.concatenate('\n', sharedProperties,

 'returns.business.name',

 'returns.site.address.line1',

 'returns.site.address.line2',

 'returns.site.address.line3',

 'returns.site.address.line4',

 'returns.site.address.posttown',

 'returns.site.address.postcode'

).toUpperCase();

 </mapping>

 <mapping to="returnsURL">

 return input.sharedProperties.get('returns.info.url')

 </mapping>

 ...

 <mapping to="totalNetPrice">

 return String.format('%.2f', input.shipment.orderItem.implicitGoodsPrice.net) + ' ' +

input.shipment.orderItem.currency;

 </mapping>

 ...

 </mappings>

</fieldmapper>

Parameters and Fields

© OrderFlow Ltd. 2022 Page 30

Skip to content

Scripting Context

Note that in each case, the input variable is used to reference the contextual data available to the script.

The following parameters are available for use in the parameters mapping script include the list below. Note that it is possible,

but not best practice, to access these values directly in the JRXML template.

For each of the property-related values, you can use the Setup -> Properties -> Search menu to determine the list of individual

properties available and values set for your current channel, organisation and site context.

Examples

The code contains examples of different ways to extract data and format it.

The formattedAddress, as the name suggests, represents the shipping address, formatted correctly by using the method

formattedAddress from the Address class and the data from input.shipment.implicitAddress from the RTD domain.

shipmentReference is the most straightforward example - it simply returns the output from input.shipment.externalReference.

orderDate contains a conditional statement - it checks whether the date of placing an order exists and if so, returns that data.

Otherwise, it returns the date of creating the order.

logo actually contains a path to the image and the specifics around logos and images - themselves are described in more detail

further in this document.

The returnsAddress uses the RTD concatenate method to create one text field that contains the returns business name and the

whole address. If separate text fields were used instead, this would have created gaps (empty lines) where data was omitted, e.g.

the address contains only 3 lines.

For the returnsURL, as well as all other information, related to returns, the Couriers (Shared) properties have to be accessed. In the

example above, only the URL is depicted with the rest being omitted, but they can easily be accessed by using the

Expression Type Description

input.order rtd.domain.OrderItem Holds a reference to the order, containing the shipment, for which the

despatch note is generated. Java object, so OrderItem domain

model can be navigated to extract values.

input.shipment rtd.domain.Shipment Holds a reference to the shipment, for which the despatch note is

generated. Java object, so Shipment domain model can be navigated

to extract values.

input.sharedProperties java.util.Map Holds reference to property values for properties in the group

'courier_shared'.

input.addressProperties java.util.Map Holds reference to property values for properties in the group 'address'.

input.Properties java.util.Map Holds reference to property values for properties in the property group

associated with the shipments currently selected courier. Use the

Setup -> Courier to determine the courier's current property group.

Parameters and Fields

© OrderFlow Ltd. 2022 Page 31

Skip to content

sharedPropertes' get method. All fields can be viewed from the Setup tab - they are located at the bottom of that page. Below is a

screenshot of some of the Courier (Shared) properties:

The last property in the example XML file is a total price, in particular - the totalNetPrice. This has been formatted by using the

Java String.format method in order to display two digits after the decimal separator and also include the currency after the price.

Parameters and Fields

© OrderFlow Ltd. 2022 Page 32

Skip to content

Fields

The field mappings allow you to access values for repeated data within the report, which in the case of despatch notes will

normally be in the form of order lines. One common exception is for despatch notes that are also used as picking notes, the field

values access the order line location entries.

In the example field mapping file below, only five field values are populated by navigating data in the order line.

Populating these fields is relatively straightforward, and typically more easily done than for parameters. For the JRXML above,

data for the fields is extracted as follows:

All data is extracted from the orderLine field, since items from the shipment are contained within it.

Scripting Context

The values available to the fields mapping script will include either of the following in the table below.

As with the parameters, the field mapping file is aimed at users familiar with the structure of the OrderFlow domain model.

The question on whether to access data via the OrderLine or the OrderLineLocation depends on which data provider is used.

<fieldmapper>

 <mappings>

 <mapping to="sku">

 return input.orderLine.product.externalReference

 </mapping>

 <mapping to="description">

 return input.orderLine.product.description

 </mapping>

 <mapping to="quantity">

 return input.orderLine.quantity

 </mapping>

 <mapping to="unitLinePrice">

 return input.orderLine.implicitUnitPrice.gross

 </mapping>

 <mapping to="totalLinePrice">

 return input.orderLine.implicitTotalPrice.gross

 </mapping>

 </mappings>

</fieldmapper>

Expression Type Description

input.orderLine rtd.domain.OrderLine Holds a reference to the current order line. Java object, so

OrderLine domain model can be navigated to extract

values.

input.orderLineLocation rtd.domain.OrderLineLocation Similar to the orderLine field. The main difference is that it

holds a separate value for each order line and location

combination. For order lines picked from multiple locations,

multiple entries will appear. Suitable for cases where the

despatch note is also used as a picking note.

Parameters and Fields

© OrderFlow Ltd. 2022 Page 33

Skip to content

Data Providers

Data providers were previously introduced in Custom Reports chapter. For despatch note generation, a number of specialist data

providers have been created.

The most commonly used ones are listed with a description below:

There are other built-in despatch note data providers available, but the use of these is more esoteric.

Class Field Type Description

DespatchNoteDataProvider OrderLine Most commonly used data provider which simply

provides a list of order lines in the current shipment.

LocationDespatchNoteDataProvider OrderLineLocation Data provider which provides a list of order line

locations. Used for despatch notes which are also

used as picking reports.

OrderItemDespatchNoteDataProvider OrderLine Data provider which for multi shipment reports, will

make available to the despatch note all order lines, for

the order, including ones in other shipments in the

same order. Useful for despatch notes where lines in

'shipments despatched' separately need to be listed.

PartShippedDespatchNoteDataProvider OrderLine Variation on DespatchNoteDataProvider , with

mechanism to set the isLastShipment parameter if

there are no more shipments to be sent out for the

curernt order.

PackageAwareDespatchNoteDataProvider OrderLine with

embellishments

Extension of DespatchNoteDataProvider , which

allows for a separate despatch note document to be

created for each package in a shipment, with package

specific despatch notes detailing the contents of the

specific package.

Data Providers

© OrderFlow Ltd. 2022 Page 34

Skip to content
Logos and Images

OrderFlow despatch notes and other printed document can contain images, particularly useful for displaying company logos.

There are a number of elements to be understood in the way that images should be used on OrderFlow.

the image element in the design (using an image element in the JRXML file).

the mechanism for identifying the image (using an image expression within the image element)

the mechanism for provisioning images (using a File Resource entry).

Declaring Images

Images are declared using an imageExpression element in the JRXML design document.

Two of the element properties are worth considering in more detail: isLazy and onErrorType.

isLazy

A flag that specifies whether the image should be loaded and processed when filling the report or when exporting it - in case the

image is not available at fill time. For logos and other images, the value of true should be used. This allows the image to be

cached more effectively, removing the need for the same image data to be embedded each despatch note generated. This

improves performance and reduces bandwidth, used in producing despatch notes.

onErrorType

Specifies the output if the image is unavailable when the system tries to load it. There are three possible options for this property

- Error, Blank and Icon. For despatch note generation, the second option, Blank, is best. If an image is not present at the point

where it is viewed or printed, a blank space will be outputted, rather than having an exception thrown or an icon appear in the

image's place.

•

•

•

<image isLazy="true" onErrorType="Blank">

 <reportElement uuid="ea357aa3-012a-494c-b13b-6ebca85b87ae"

 x="0" y="28" width="215" height="25"/>

<imageExpression><![CDATA[$P{logo}]]></imageExpression>

</image>

Logos and Images

© OrderFlow Ltd. 2022 Page 35

Skip to content

Uploading Images

To add a new logo to the file resources from OrderFlow, click on the Setup tab and from the left-hand side menu select File

Resources. Then either select the submenu New, or click Add new file resource from the page on the right. Both of these actions

lead to the New File Resource page.

Any image detail can be set from this page. In this case, we want the Reference to be something like logos/mychannel.png. To

find the exact reference of the channel, from OrderFlow, go to Setup, then Channels and find the channel you need. The name that

is required is the channel reference - in the example below it is MYCHANNEL.

The Title can be the name of the channel, followed by "Logo" (e.g. MyChannel Logo) to make it easier to distinguish amongst the

file resources. Once the Reference and Title have been set, click Create at the bottom of the page. This will create a new file

resource with the data that you have set up for it.

Before uploading the image, make sure that the Type of the file resource is set to Image. Then click on Upload image at the

bottom of the screen, browse for and select the image you want to appear as your logo and click Update. Your logo should now

be displayed at the bottom of the page.

Logos and Images

© OrderFlow Ltd. 2022 Page 36

Skip to content

Image Dimensions

An understanding of how image dimension are calculated is important in ensuring high quality image printouts.

JasperReports works on the basis of 72 DPI (Dots per Inch). However, images typically require a 300 DPI resolution for good

quality printing.

The example despatch note contains a logo with a size of 215 by 25 pixels in iReport (with a 72 DPI resolution). This converts to

approximately a 76x9mm image when printed. For 203 DPI (some Citizen and Zebra printers) a 606 by 70 pixels image is

required. For printers operating at 300 DPI, best results are achived if the image is of size 896 by 104 pixels.

The conversions above are illustrated in the table below:

A note on some specific examples follows:

JasperReport Pixels to Millimetres

Divide the pixels by 72 (to get the number of inches), then multiply the value by 25.4, i.e. (pixels/72)*25.4.

Image in Millimetres to Pixels

You will need to do this conversion when working out the required dimensions of an image in pixels, for a given space in

millimetres.

First convert the millimetres in inches and work from there, by dividing the size in millimetres by 25.4, i.e. millimetres/25.4. From

there, converting to the respective size in pixels is straightforward - the image size in inches is simply multiplied by the DPI:

Using the above calculations will be helpful in ensuring that logos (and other image) in the report is printed out with the best

possible quality. For labels with embedded barcodes, this is particularly important in ensuring that that the barcodes can be

scanned off the printed label stock.

Millimetres (mm) Pixels - 72 DPI (JRXML) Pixels - 203 DPI Pixels - 300 DPI

75.85 215.01 606.2 895.87

8.82 25 70.49 104.17

Millimetres(mm) Inches Pixels - 72 DPI (JRXML) Pixels - 203 DPI Pixels - 300 DPI

x y = x/25.4 y*72 y*203 y*300

Logos and Images

© OrderFlow Ltd. 2022 Page 37

Skip to content
Subreports and Concatenated Reports

When preparing despatch notes, advanced techniques such as the use of subreports and concatenated reports are often

required.

Subreports

Subreports allow for a primary or master report to embed a secondary or subreport. This feature is particularly useful for cases

where a part of a report needs to be reused.

A good example is when the despatch note embeds a courier label, with the latter being detatchable from the main document via

a peel-off section of integrated stationery. The courier label has a design which is specific to the courier being used, while the

rest of the despatch note has a bespoke design for the customer, with a custom layout, use of customer logos, etc.

In order to make it easier for different sized courier labels to be embedded, the despatch note by itself is also embedded as a

subreport, therefore the master report only contains the code for integrating those two.

Subreports, as the name suggests, are reports, which are embedded in other reports. In the aforementioned example, the main

despatch note and the courier label are the embedded reports, whereas the master reports simply contains placeholders for

these.

Below is an example (the JRXML file) of such a master report with an embedded 190x90 courier label at the bottom of the page

and the embedded header of the despatch note at the top of the page:

<?xml version="1.0" encoding="UTF-8"?>

<jasperReport xmlns="http://jasperreports.sourceforge.net/jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jasperreports.sourceforge.net/jasperreports

 http://jasperreports.sourceforge.net/xsd/jasperreport.xsd"

 name="integrated_a4_190x90_bottom" language="groovy"

 pageWidth="595" pageHeight="842" columnWidth="595"

 leftMargin="0" rightMargin="0" topMargin="0"

 bottomMargin="0" uuid="1906a486-9497-44aa-a9f3-aa644caf2260">

<background>

<band splitType="Stretch"/>

</background>

<detail>

<band height="559" splitType="Stretch">

 <subreport isUsingCache="true" runToBottom="false">

 <reportElement uuid="c06fbe33-f558-4564-bca8-58dd91c5ecc1"

 x="0" y="0" width="595" height="537"/>

 <parametersMapExpression>

 <![CDATA[$P{REPORT_PARAMETERS_MAP}.courier_label_parameters]]>

 </parametersMapExpression>

 <dataSourceExpression>

 <![CDATA[$P{REPORT_PARAMETERS_MAP}.despatch_note_datasource]]>

 </dataSourceExpression>

 <subreportExpression>

 <![CDATA[$P{REPORT_PARAMETERS_MAP}.despatch_note]]>

 </subreportExpression>

 </subreport>

</band>

</detail>

<lastPageFooter>

<band height="283">

 <subreport runToBottom="false">

 <reportElement uuid="aedb7a2a-8fd2-4393-9be2-f1e04776a5d0"

 x="28" y="0" width="538" height="255"/>

 <parametersMapExpression>

 <![CDATA[$P{REPORT_PARAMETERS_MAP}.courier_label_parameters]]>

 </parametersMapExpression>

Subreports and Concatenated Reports

© OrderFlow Ltd. 2022 Page 38

Skip to content

PARAMETER MAPPINGS IN SUBREPORTS

Parameter mappings can be used in subreports.

Suppose for example we want to use a parameter mapping to output the return address using scoped properties. This can be

done using the following parameter mapping entry.

When the subreport parameter mapping code is evaluated, the resulting value is stored against a parameter map that is visible

only to the subreport. This parameter map is stored using the the key %subreport%_parameters .

As a result, the parametersMapExpression in the previous section in the master report (which contains the reference to the

subreport) is required as shown below to allow the JRXML template to access the returnsAddress parameter described above.

Concatenated Reports

Concatenated reports are a more advanced feature of Jasper Reports, primarily used with subreports and report groups.

Generating a concatenated report is not covered in this document, but if required, OrderFlow can provide information on how to

create them or can help by generating a custom concatenated report to cover your needs.

 <dataSourceExpression>

 <![CDATA[$P{REPORT_PARAMETERS_MAP}.courier_label_datasource]]>

 </dataSourceExpression>

 <subreportExpression>

 <![CDATA[$P{REPORT_PARAMETERS_MAP}.courier_label]]>

 </subreportExpression>

 </subreport>

</band>

</lastPageFooter>

</jasperReport>

<fieldmapper>

 <mappings>

 <mapping to="returnsAddress">

 def sharedProperties = input.sharedProperties;

 return rtd.reports.util.ReportUtils.concatenate('\n', sharedProperties,

 'returns.business.name',

 'returns.site.address.line1',

 'returns.site.address.line2',

 'returns.site.address.line3',

 'returns.site.address.line4',

 'returns.site.address.posttown',

 'returns.site.address.postcode'

).toUpperCase();

 </mapping>

 </mappings>

</fieldmapper>

<![CDATA[$P{REPORT_PARAMETERS_MAP}.courier_label_parameter)]]>

Subreports and Concatenated Reports

© OrderFlow Ltd. 2022 Page 39

Skip to content
Package Aware Despatch Notes

As of OrderFlow 3.7.7, for multi-package shipments it is possible to use a specific data provider that allows for the creation of a

separate document per package. An example is shown below:

This feature is enabled through the use of the despatch note data provider

rtd.paperwork.despatchnote.PackageAwareDespatchNoteDataProvider , plus changes to the JRXML document.

Package Aware Despatch Notes

© OrderFlow Ltd. 2022 Page 40

Skip to content

The JRXML is modified for a group to be declared per package, which refers to the groupKey field. This results in a new page

started with each package.

The groupHeader and groupFooter elements are then used instead of the pageHeader and pageFooter bands for the delivery

address and return addresses and other top level information required in the despatch note.

<field name="groupKey" class="java.lang.String"/>

<group name="Package" isStartNewPage="true">

 <groupExpression><![CDATA[$F{groupKey}]]></groupExpression>

 <groupHeader>

 <band height="270">

 ... group header content

 </band>

 </groupHeader>

 <groupFooter>

 <band height="71">

 ... group footer content

 </band>

 </groupFooter>

</group>

<detail>

 <band height="15" splitType="Stretch">

 ... band content

 </band>

</detail>

Package Aware Despatch Notes

© OrderFlow Ltd. 2022 Page 41

Skip to content

Internationlised Despatch Notes

An internationalised despatch note is one that supports local language text through a single report. Without internationalisation,

creating separate language version of despatch notes would require a separate despatch note report per language, resulting in a

substantial amount of work in setting up and maintaining multi-language environments.

In the next section we describe how despatch notes are internationalised in OrderFlow, and follow this with a discussion on how

different language versions are identified on the system.

Report Setup

The starting point for an internationalised despatch note is normally an existing working despatch note which contains text

strings which are 'hard-coded' in the JRXML file in a single language. The idea is to replace these with resource references, where

the actual text can be retrieved from a set of external files. This set of files is known as a message bundle.

If these message resources are not supplied as files built in to the application, they can be uploaded manually from the Setup ->

File Resources menu. The example below shows a couple of built-in message resource files.

Message Resource

The message resources are properties files, with entries such as the following (for English).

The equivalent entries in the German language message resource are shown below:

With the resource bundle in place and ready to be used, we need to update the despatch note to use internationalised text.

page.header.help=Can we help?

page.footer.footer.text=Thank you for shopping with us. We hope you are happy with your order.

page.header.help=Wie können wir Ihnen behilflich sein?

page.footer.footer.text=Vielen Dank für Ihre Bestellung. Wir hoffen Ihre Bestellung war zufriedenstellend.

Internationlised Despatch Notes

© OrderFlow Ltd. 2022 Page 42

Skip to content

The first step here is to identify the message bundle to be used. This can be done using the Message Bundle field on the Report

Configuration screen for the despatch note, shown below.

Note that the value here corresponds with the reference of the resource entry (excluding the '.properties' suffix). The exact

mechanism for this is discussed in more detail in the Locale Identification section.

Next, the report design needs to be updated. The JRXML example shown below.

Note that the message reference 'page.footer.footer.text' corresponds with the key for one of the entries in the message property

file.

In the example above, the localised German text may appear as in the below.

<textField>

 <reportElement uuid="85d01f90-e814-4aab-aa39-8e7590b4a84b" style="default" x="0" y="9" width="565"

height="14">

 </reportElement>

 <textElement markup="none"/>

 <textFieldExpression><![CDATA[$R{page.footer.footer.text}]]></textFieldExpression>

</textField>

Internationlised Despatch Notes

© OrderFlow Ltd. 2022 Page 43

Skip to contentLocale Identification

The message files that are described in the previous section can vary according to language, country, and can also have a

variant. This combination of information is known as a locale.

For example, it is possible to have separate resource files for Swiss and Austrian German, each with their own sets of text.

One question is how the Locale to be used can be identified in OrderFlow. The language is determined from the languageCode

field of the order. The country code is mapped from the order or shipment's delivery country code field. It is also possible to have

further variations in the resource file used based on the order's source field. This for example, would allow for different

messages to be displayed for web site versus Amazon or eBay orders, even for the same country or language combination.

The message resource files are named used the following naming covention:

The locale suffix has values such as those shown in the next table.

[message bundle reference]_[locale suffix].properties

Value Description

despatchnote.properties The default resource file, used if no locale information is specified.

despatchnote_de.properties A resource file used for German orders.

despatchnote_de_CH.properties A resource file used for Swiss German orders. Note the use of the CH country

code to include Switzerland in the locale.

despatchnote_de_CH_amazon.properties A resource file used for Swiss German orders that have originated from the

Amazon channel.

Internationlised Despatch Notes

© OrderFlow Ltd. 2022 Page 44

Skip to content

Parameter and Field Mappings with Localised Messages

The use of resource entries such as $R{page.footer.footer.text} support simple cases where one simply needs to replace

some static text with a single language-specific value.

More complex cases may require some scripting. Suppose you wish to support output of the following text:

In English:

In German:

In the above case, we cannot simply use resource references in the JRXML, as there is additional dynamic information to be

supplied in populating the text string.

In order to achieve the above, from Orderflow 3.8.0 we can use a Parameter Mapping, from which we can populate the message

string appropriately. The mechanism for doing this is described next.

Firstly, the JRXML will contain an additional field declaration and design element, as shown below.

We then populate the parameter value using an entry such as the following:

Note that the message resource entry can be obtained using the expression

messages.message('shipment.expected.arrive.text') . However, we can additionally specify multiple arguments for the

dynamic values we want to supply.

The bundle resources themselves need the additional entries, which can be added as follows for English.

The German equivalent entry is shown below.

<parameter name="expectedArrivalText" class="java.lang.String"/>

...

<textField isBlankWhenNull="true">

 <reportElement uuid="7d8c0c59-0c87-40a8-b854-193cb2927209" style="default"

 mode="Transparent" x="2" y="208" width="563" height="14" forecolor="#000000">

 </reportElement>

 <textElement verticalAlignment="Middle" markup="styled"/>

 <textFieldExpression><![CDATA[$P{expectedArrivalText}]]></textFieldExpression>

</textField>

<mapping to="expectedArrivalText">

 def dateText = new java.text.SimpleDateFormat('d MMMM').format(input.shipment.requestedDeliveryDate)

 return messages.message('shipment.expected.arrive.text', dateText);

</mapping>

shipment.expected.arrive.text=Your order is expected to arrive on {0}.

shipment.expected.arrive.text=Ihre Bestellung wird voraussichtlich am {0} ankommen.

Internationlised Despatch Notes

© OrderFlow Ltd. 2022 Page 45

Skip to content

Note that the placeholders are defined using the convention {0}, {1}, etc, with the number corresponding to the argument index in

the messages.message(...) expression.

Internationlised Despatch Notes

© OrderFlow Ltd. 2022 Page 46

Skip to content
Labels

One of the primary uses of Jasper Reports in OrderFlow is in the creation of labels. Typically, labels will include barcodes to allow

them to be scanned using a handheld terminal (HHT).

The most common types of labels produced in OrderFlow include the following:

product labels with barcodes

location labels

shipment courier labels

labels for licence plates

custom labels to support particular operational processes

Label Reports

As with despatch notes, labels are created in OrderFlow using using Jasper Reports. Labels can either be created using

standalone reports, or using reports that are embedded into other processes. For examples, location labels would typically be

created using standalone reports, while shipment courier labels are created as part of a 'Print Label' operation, normally invoked

by a packer on the packing screen.

Standalone Labels

Standalone Labels are created using a combination of the following:

a data source, typically defined using SQL, to retrieve the data to be used to generate the label

optional parameters to restrict the data set

a Jasper Reports JRXML design

The JRXML design will typically include one or more barcodes.

An example of a standalone label is shown below:

Data Source

The data provider class is typically rtd.reports.dataprovider.SqlDataProvider , with a data source such as the following:

•

•

•

•

•

•

•

•

SELECT

 p.externalReference AS 'sku',

 p.barcode AS 'barcode',

 p.description AS 'description',

 c.name AS 'category'

FROM product p

LEFT JOIN product_category c ON p.categoryId = c.id

WHERE

p.deleted = 0

AND

p.activated is TRUE

#[include:text_string] AND

 (p.externalReference LIKE '%${literal:text_string}%'

OR

 p.barcode LIKE '%${literal:text_string}%'

Labels

© OrderFlow Ltd. 2022 Page 47

Skip to content

The above example is for a product barcode generating report, which generates barcodes for labels matching the text_string

parameter.

Design

The Jasper Report design for the label above includes the following.

Notice of the use of the Code128 component; in this case as Code 128 barcode is being generated. More detail on the barcode is

configuration is included in the 'Barcodes' section below.

OR

 p.description LIKE '%${literal:text_string}%')

#[include]

ORDER BY p.externalReference

<?xml version="1.0" encoding="UTF-8"?>

<jasperReport

 xmlns="http://jasperreports.sourceforge.net/jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jasperreports.sourceforge.net/jasperreports

 http://jasperreports.sourceforge.net/xsd/jasperreport.xsd"

 name="A5Label" pageWidth="290" pageHeight="290" orientation="Landscape"

 whenNoDataType="NoDataSection" columnWidth="270"

 leftMargin="10" rightMargin="10" topMargin="10" bottomMargin="10">

 <style name="default" isDefault="true" fontName="Verdana" fontSize="8">

 <box topPadding="0" leftPadding="0"/>

 </style>

 <style name="small" style="default" fontSize="7"/>

 <style name="header" vAlign="Middle" fontName="Verdana" fontSize="8"/>

 <field name="sku" class="java.lang.String">

 <fieldDescription><![CDATA[]]></fieldDescription>

 </field>

 <field name="barcode" class="java.lang.String">

 <fieldDescription><![CDATA[]]></fieldDescription>

 </field>

 <field name="description" class="java.lang.String">

 <fieldDescription><![CDATA[]]></fieldDescription>

 </field>

 <field name="category" class="java.lang.String">

 <fieldDescription><![CDATA[]]></fieldDescription>

 </field>

 <detail>

 <band height="270">

 ...

 <componentElement>

 <reportElement x="4" y="9" width="171" height="58">

 <printWhenExpression><![CDATA[!org.apache.commons.lang.StringUtils.isNumeric($F{barcode})]]></

printWhenExpression>

 </reportElement>

 <jr:Code128 xmlns:jr="http://jasperreports.sourceforge.net/jasperreports/components"

 xsi:schemaLocation="http://jasperreports.sourceforge.net/jasperreports/components

 http://jasperreports.sourceforge.net/xsd/components.xsd"

 moduleWidth="2.0" textPosition="none">

 <jr:codeExpression><![CDATA[$F{barcode}]]></jr:codeExpression>

 </jr:Code128>

 </componentElement>

 </band>

 </detail>

</jasperReport>

Label Reports

© OrderFlow Ltd. 2022 Page 48

Skip to content

Process-embedded Labels

Apart of the content, the main difference between standalone and embedded labels is in the data source. While standalone

labels use a generic SQL-oriented data provider, embedded labels use data providers that only work within specific processes or

interactions.

For shipment courier labels, some of the available data providers are shown below (note that the documentation for these

applies as of OrderFlow 3.7.7):

Note that for all shipment courier labels, many of the parameter values are set up using the LabelDataPopulator class.

Name Usage

rtd.courier.label.ParametersOnlyLabelDataProvider Used for labels for which uses only the supplied

parameter values only. No Jasper Report Fields are

used

rtd.courier.label.EmbeddedImageLabelDataProvider Labels with a single embedded label image,

accessible using either 'labelImageFile' or

'labelImageStream' Parameter ($P{}) values.

rtd.courier.label.EmbeddedImagesLabelDataProvider Labels with one or more embedded images (usually,

one per pacakge), accessible using either

'labelImageFile' or 'labelImageStream' Field ($F{})

values.

rtd.courier.label.IndexedShipmentOrPackageLabelDataProvider Labels for which the elements are defined within the

Jasper Report, allowing for one or more field values.

Label Reports

© OrderFlow Ltd. 2022 Page 49

Skip to content

Name Usage

shipment The current shipment for which the label is being produced.

package If the label is being produced just for a single package, then identifies this package.

shipmentOrPackage Allows data that is common to shipments and packages to be referenced in a uniform way.

shipmentCourierOptions Represents courier options for the selected courier and service.

despatchNoteProperties Scoped properties from the 'despatch_note' property group.

sharedProperties Scoped properties from the 'courier_shared' property group.

addressProperties Scoped properties from the 'address' property group.

[courier]Properties Scoped properties from the courier-specific property group.

shipmentCourierProperties Represents courier-specific data that has been populated against the shipment.

despatchReference The shipment or package despatch reference.

countryLookup Can be used to look up the country name from the country code stored against the shipment.

Label Reports

© OrderFlow Ltd. 2022 Page 50

Skip to content

An example JRXML file which uses EmbeddedImagesLabelDataProvider is shown below:

An example JRXML file which uses IndexedShipmentOrPackageLabelDataProvider is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<jasperReport xmlns="http://jasperreports.sourceforge.net/jasperreports" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance" xsi:schemaLocation="http://jasperreports.sourceforge.net/jasperreports http://

jasperreports.sourceforge.net/xsd/jasperreport.xsd" name="4 by 6 label" pageWidth="288" pageHeight="432"

columnWidth="288" leftMargin="0" rightMargin="0" topMargin="0" bottomMargin="0">

 <field name="labelImageFile" class="rtd.domain.DataFile"/>

 <field name="labelImageStream" class="java.io.InputStream"/>

 <detail>

 <band height="432">

 <image scaleImage="RetainShape" hAlign="Center" vAlign="Middle">

 <reportElement mode="Opaque" x="0" y="0" width="288" height="432" forecolor="#000000"

backcolor="#FFFFFF"/>

 <imageExpression class="java.io.InputStream"><![CDATA[$F{labelImageStream}]]></imageExpression>

 </image>

 </band>

 </detail>

</jasperReport>

<?xml version="1.0" encoding="UTF-8"?>

<jasperReport xmlns="http://jasperreports.sourceforge.net/jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jasperreports.sourceforge.net/jasperreports

 http://jasperreports.sourceforge.net/xsd/jasperreport.xsd" name="4 by 6 label"

 pageWidth="283" pageHeight="425" columnWidth="263" leftMargin="10" rightMargin="10" topMargin="10"

bottomMargin="10">

 <parameter name="formattedDeliveryAddress" class="java.lang.String"/>

 <parameter name="contactName" class="java.lang.String"/>

 <parameter name="shipmentReference" class="java.lang.String"/>

 <parameter name="now" class="java.lang.String"/>

 <field name="despatchReference" class="java.lang.String"/>

 <field name="packageInfo" class="java.lang.String"/>

 <detail>

 <band height="400">

 <textField isStretchWithOverflow="true">

 <reportElement uuid="10aaa896-d7c9-4728-b2b9-adfeab764fd3" mode="Transparent" x="18" y="32"

width="223" height="41" forecolor="#000000"/>

 <textElement textAlignment="Left" verticalAlignment="Bottom">

 </textElement>

 <textFieldExpression><![CDATA[$P{contactName}]]></textFieldExpression>

 </textField>

 <textField isStretchWithOverflow="true">

 <reportElement uuid="2b555a0d-f79e-4d3c-aa99-a04d0214de33" mode="Transparent" x="18" y="77"

width="223" height="198" forecolor="#000000"/>

 <textElement textAlignment="Left" verticalAlignment="Top">

 </textElement>

 <textFieldExpression><![CDATA[$P{formattedDeliveryAddress}]]></textFieldExpression>

 </textField>

 <textField>

 <reportElement uuid="5d3281c1-52c6-434f-83f3-5ccc4a37777f" mode="Transparent" x="23" y="378"

width="218" height="12"/>

 <textElement textAlignment="Right" verticalAlignment="Middle">

 </textElement>

 <textFieldExpression><![CDATA[$P{shipmentReference}]]></textFieldExpression>

 </textField>

 <componentElement>

 <reportElement uuid="57727cbf-0860-47de-bb41-3960b58a1eb4" x="18" y="285" width="223" height="42"/

>

 <jr:Code128 xmlns:jr="http://jasperreports.sourceforge.net/jasperreports/components"

xsi:schemaLocation="http://jasperreports.sourceforge.net/jasperreports/components http://

jasperreports.sourceforge.net/xsd/components.xsd" moduleWidth="2.0" textPosition="none">

 <jr:codeExpression><![CDATA[$F{despatchReference}]]></jr:codeExpression>

Label Reports

© OrderFlow Ltd. 2022 Page 51

Skip to content

Note that the packageInfo and despatchReference fields are generated using the field mapping:

 </jr:Code128>

 </componentElement>

 <textField pattern="">

 <reportElement uuid="475a6957-0faf-49f4-901d-d05ab295941c" x="23" y="347" width="218" height="12"/

>

 <textElement verticalAlignment="Bottom" markup="html">

 </textElement>

 <textFieldExpression><![CDATA[$F{packageInfo}]]></textFieldExpression>

 </textField>

 </band>

 </detail>

</jasperReport>

<fieldmapper>

 <mappings>

 <mapping to="packageInfo">

 return 'Package ' + input.packageIndex + ' of ' + input.packageCount;

 </mapping>

 <mapping to="despatchReference">

 return input.shipmentOrPackage.despatchReference;

 </mapping>

 </mappings>

</fieldmapper>

Label Reports

© OrderFlow Ltd. 2022 Page 52

Skip to content

Label Sizing and Printing

One of the most critical things to get right with labels is size.

JRXML work on the basis of a 72 pixel per inch representation. This can be used to determine the number of pixels for each

dimension in your report.

For example, a 4 by 6 label will require a report that is 72 x 4 = 288 pixels wide, and 72 x 6 = 432 pixels in height.

In order to get the label to print correctly, the printer label stock settings will need to be checked to ensure that these match the

actual dimensions of the label stock.

A typical routine for verifying the use of a label printer for printing labels will be as follows:

measure the label stock in each dimension, converting the measured values to inches.

multiply the number of inches to determine the required dimension for the JRXML.

create a simple standalone report for a label with these dimensions. Include in this report a barcode element, so that you can

verify that the report and printer are set up correctly for barcode printing.

verify the printing of this label by running the report, then feeding the report to the printer.

ensure that the barcode appears to be appears to be crisp and free of jagged edges, and that it scans without any difficulty.

The printing step above can be done from the report output screen, by clicking on the 'Print' icon, as shown below.

•

•

•

•

•

Label Sizing and Printing

© OrderFlow Ltd. 2022 Page 53

Skip to content

Note that your browser will need to have Java applets enabled for the screen shown above to work.

Alternatively, you can download the printed report as a PDF document. Note, however, that printing a PDF output uses different

image rendering and printing software from that typically used in OrderFlow operations, so a test of a PDF version of the

document can only be regarded as a partial test.

Barcodes

Jasper Report has built-in support for barcode generation; a design tool such as iReport will easily allow you to embed a barcode

such as the following into your report:

<jr:Code128 xmlns:jr="http://jasperreports.sourceforge.net/jasperreports/components"

 xsi:schemaLocation="http://jasperreports.sourceforge.net/jasperreports/components

 http://jasperreports.sourceforge.net/xsd/components.xsd"

 moduleWidth="2.0"

 textPosition="none">

 <jr:codeExpression><![CDATA[$F{barcode}]]></jr:codeExpression>

</jr:Code128>

Barcodes

© OrderFlow Ltd. 2022 Page 54

Skip to content

Depending on the length of the text, and the size of the barcode, the moduleWidth parameter may need to be adjusted to maike

Images

As with despatch notes, it is quite common to embed images onto labels. For example, the label itself may in its entirety contain

a label image generated using a third party courier system. The Despatch Notes chapter contains details on how to embed

images into Jasper Reports documents. The same discussion applies here: it is critical to get the image dimensions correct on

the report so that the image does not need to scale, or if it does, scales in a way that does not result in any loss of printing

quality.

Images

© OrderFlow Ltd. 2022 Page 55

Skip to content
Dashboards and Views

One of the main uses of reports in OrderFlow is in the creation of dashboards. Dashboards are based on snippets of read-only

information, called fragments, which aim to provide, in a very accessible and visual way, access to key items of information on

the system. Unlike regular reports, dashboards are highly visible to users.

For example, a dashboard can provide information about courier selections and despatch delivery choices. In that case there

would be fragments that display:

shipments, packed at the day of viewing (essentially - today) - grouped by carrier

outstanding shipments - grouped by carrier

outstanding shipments - grouped by courier state

outstanding shipments - grouped by destination country.

A custom dashboard fragment can be added, for instance, to display all shipments for the past month (grouped by courier) in the

form of a graph. Alternatively, a new dashboard screen can be created to contain specific information relating to a particular

courier.

New dashboard screens, similarly to reports, can be added by:

creating a new dashboard screen from scratch. This usually requires the most effort.

cloning an existing dashboard - either a built-in or a custom screen.

overriding a built-in dashboard screen. Essentially, this does not create a new dashboard, but rather modifies an existing one.

Existing dashboard screens can be edited, for example, by adding or removing fragments. Indeed, the system supports the

creation of entirely new screens, which can be attached to menus (both new and existing), allowing for a highly customised view

of data on the system without any development effort.

New or updated dashboard screens can be attached to existing or new menu entries. This greatly increases the capability that

OrderFlow customers have to increase visibility of specific areas of the system that are important to their businesses.

An example of one of the dashboard fragments mentioned above is shown next:

This fragment displays all outstanding shipments, grouped by courier state. If there are none, it displays an information message,

stating that there are no outstanding shipments on the system.

OrderFlow's dashboard management framework goes further by supporting the modification of dashboard fragments.

Dashboard fragments are based on reports on the system. As with other reports, administrators have the tools at their disposal

for overriding, cloning, exporting/importing or modifying dashboard fragments. More information on creating new reports can be

found in the Report Administration section of the previous chapter.

•

•

•

•

•

•

•

Dashboards and Views

© OrderFlow Ltd. 2022 Page 56

Skip to content

OrderFlow support staff can be commissioned to perform these modifications. Alternatively, customer IT staff can be trained -

with with a little help from this document - to do the same without the direct involvement of OrderFlow.

Dashboard Report Fragments

In order to configure dashboard fragments, it is worth familiarising yourself with the Custom Reports on the system. For

authoring dashboard fragments and screens, the following additional skills are required:

familiarity using HTML.

knowledge of how to use the FreeMarker templating engine, which can be easily acquired from the FreeMarker web site.

Editing Existing Dashboards

To configure the report design, navigate to the Fragment Configuration page from OrderFlow by clicking on the Reports tab, then

Dashboards from the left-hand side menu. Select Fragments and filter by using the drop-down menu on the right-hand side of the

page in order to find the dashboard you require. Clicking on it will take you to the Fragment Detail page, at the bottom of which

you can find the code to be used in the dashboard screens.

An example code snippet for the fragment in the first section of this chapter is:

From that page you can also navigate to the Fragment Configuration page by clicking on the Edit (pencil) icon at the top right-hand

corner of the page, shown below.

Once in the Fragment Configuration page, you can edit all properties of the dashboard fragment. The Report properties menu is

identical to the one for custom and overriden reports. However, one major difference here is the Format of the report, which for

dashboards fragments must be text.

•

•

 ${dashboard.report(request,'carriage_state', 'right')}

Dashboard Report Fragments

© OrderFlow Ltd. 2022 Page 57

http://freemarker.org/

Skip to content

Fragment Design

To view the design of the report, click on the Preview (magnifying glass) icon on the right-hand corner of the Report designs

menu:

Note that the design for a dashboard fragment is based on a combination of HTML markup and FreeMarker templating elements.

An example of design is shown below:

You can preview the fragment by going back to the Fragment Detail page and clicking on Preview, located just below the

Summary.

<div class="box-right read">

<h3 class="collapsable">Outstanding shipments by courier state - click to view</

h3>

<#if results?size gt 0>

<dl class = "half">

<#list results as result>

 <#assign courierState=helper.makeLegible(result.courierState!'None')/>

 <dt>${courierState}</dt>

 <dd>${result.shipmentCount}

 <a title="Search for shipments in courier state '${courierState}'"

 href="${contextPath}/despatch/courier/shipment/searchnew.htm?courierState=${result.courierState!''}"

class="floatRight">

 </dd>

</#list>

<#else>

<div class="info message">

There are no outstanding shipments on the system.

</div>

</#if>

<!--[age]-->

</div>

Dashboard Report Fragments

© OrderFlow Ltd. 2022 Page 58

Skip to content

Data Providers

When working with dashboards, the manner in which data is retrieved is determined by it is useful how to use different data

provider classes.

The data providers below are the main data providers used in custom SQL-based dashboards.

All of the providers above refer to Java class names for classes in the package rtd.reports.dataprovider . For example, the

fully qualified name for SqlDataProvider is rtd.reports.dataprovider.SqlDataProvider .

Note that it is also possible for data providers to use functionality built-in to the system, but these data providers are typically not

used in custom dashboards created by customer technical users or OrderFlow support staff.

SQLDataProvider

This data provider is used with SQL queries which return a list of rows from the database.

For example, the following SQL can be used to return the 10 orders most recently added to the system:

The FreeMarker markup which would be used to display the results of this report on a dashboard is shown below:

Note the syntax ${result.invoiceContactName!'Unknown'} allows for the value 'Unknown' to be used if the underlying

value is null. FreeMarker is not very forgiving with null values; it will not allow the syntax

${result.invoiceContactName} to be used if the underlying data is null.

If no substitue value is required, then the syntax ${result.invoiceContactName!''} can be used.

Alternatively, the underlying SQL can ensure that a non-null value is returned using a function call such as

ifnull(invoiceContactName,'Unknown') .

Name Usage

SqlDataProvider Display a single list of rows

MapResultDataProvider Display just the named column values for a single row of data

MultipleSqlDataProvider Allow multiple queries to be referenced in a single report

select externalReference, invoiceContactName from order_item order by id desc limit 10;

<#list results as result>

<p>${result.externalReference} ordered by ${result.invoiceContactName!'Unknown'}</p>

</#list>

A note on null values

Data Providers

© OrderFlow Ltd. 2022 Page 59

Skip to content

MapResultDataProvider

This data provider is used with SQL which simply return a single row of data.

For example, the following SQL will give a count of shipments created in the last day by line count:

Note that the query above will return a single row of data, as in the table below:

When MapResultDataProvider is used, the results can be referenced in the following way:

MultipleSqlDataProvider

In some more complicated scenarios, it is useful to have the results of multiple SQL queries providing the data for a single

dashboard fragment. For these situations, the MultipleSqlDataProvider data provider can be used.

An example data source value for this data provider might be the following:

The data returned from these queries can be displayed using the following:

select

count(id) allShipments,

sum(if(shipment.multiLine,0,1)) singles,

sum(if(shipment.multiLine,1,0)) multis

from shipment

where created >= date(now());

allShipments singles multis

115 84 31

<p>All Shipments: ${result.allShipments}</p>

<p>Single Line Shipments: ${result.singles}</p>

<p>Multiline Shipments: ${result.multis}</p>

all_open_orders:

select count(id) count from order_item where completed is null;

open_orders_by_channel:

select

channel.name channel,

count(orderItem.id) count

from order_item orderItem

join channel channel on orderItem.channelId = channel.id

where orderItem.completed is null

group by channel.id

order by channel.name;

<#assign allOpenOrders=results.all_open_orders[0]/>

<#assign openOrdersByChannel=results.open_orders_by_channel/>

<p>All Open Orders: ${allOpenOrders.count}</p>

<#list openOrdersByChannel as result>

<p>${result.channel} orders: ${result.count}</p>

</#list>

Data Providers

© OrderFlow Ltd. 2022 Page 60

Skip to content

Notice that the results of all of the queries are grouped in a map called results , which allows the results of an individual report

to be referenced using the syntax results.identifier .

Notice also how the identifier is defined using the identifier: syntax in the data source in the line prior to the associated SQL

for that report identifier.

Data Providers

© OrderFlow Ltd. 2022 Page 61

Skip to content

Macros

Unlike the example, described above, it is sometimes the case that macros are used in dashboard fragments. Macros (short for

macroinstruction) are essentially rules that specify how a certain input should be mapped to a replacement output. A set of

macros are available to make the task of using certain data in dashboard fragments less repetitive and easier to access.

Some of the more frequently used macros include:

Name Parameters

dateTime Displays date and time in locale-aware format.

dateOnly Displays date only in locale-aware format.

icon Used to display a named icon on the system.

Macros

© OrderFlow Ltd. 2022 Page 62

Skip to content

A Note on Product Display

For different environments it is useful to display products in slightly different ways. For example, if the product external reference

is a human readable SKU known to operators, then it is appropriate to use the product externalReference to represent products.

However, if the product external reference is a system generated value without any obvious meaning, then the description

might be more appropriate.

Similarly, when quantities need to be displayed, the system can be helpful in ensuring that the correct quantity type (e.g. units,

weight, volume) is displayed, with the correct unit of measure.

The dashboards accommodate this using a set of macros, which are helpful in displaying products.

An example usage of these macros is shown below:

Note that the initialiseProductMap macro is used to efficiently pull back to necessary configuration and data to apply the

configured strategy for displaying product titles and quantities.

Note that for custom dashboards that needs to work in only one environment, a simpler approach will suffice, where the product

title can be displayed using either ${product.externalReference} or ${product.description} , as the situation requires.

Name Parameters

productTitle Displays product title, applying configuration to determine whether this should be the SKU, the

product description, or a combination of both.

displayQuantityAndUnits Provides a formatted display of quantity together with they quantity units.

initialiseProductMap Called just before iterating through a list of products in which the productTitle and

displayQuantityAndUnits macros are used.

<table>

<thead>

 <tr>

 <th width="50%">Reference</th>

 <th width="25%" class="integer">Quantity</th>

 </tr>

</thead>

<tbody>

<@initialiseProductMap results=results productIdIdentifier="id"/>

<#list results as result>

 <tr>

 <td><@productTitle reference=result.reference description=result.description parameters=parameters/></td>

 <td class="integer">

 <@displayQuantityAndUnits productId=result.id quantity=result.count/>

 </td>

 </tr>

</#list>

</tbody>

</table>

A Note on Product Display

© OrderFlow Ltd. 2022 Page 63

Skip to content

Dashboard Screens

Dashboard screens are essentially a group of dashboard fragments, displayed in a way that is most suitable for the user(s).

Below is an example of a built-in dashboard screen with four fragments:

Any dashboard screen can be edited by clicking on the Override link at the bottom right-hand corner of it. This leads to the Screen

details page, where you can see all properties of the dashboard. Clicking on Edit dashboard screen takes you to the Edit Screen

page, where these properties can be edited.

The Template defines how the dashboard screen is structured. Below is an example of such a template:

<#assign pageHeader = "Carriage and Delivery Dashboard"/>

<#include "viewheader.txt"/>

<div class="textbox highlight">Views relating to shipment destination and carriage are shown below. See also

the

 carriage-centric shipment search

.</div>

<#if dashboard.userView(request,'order:status')>

<div class="container-left">

${dashboard.report(request,'carriage_packed_today', 'left')}

${dashboard.report(request,'carriage_outstanding', 'left')}

</div>

<div class="container-right">

${dashboard.report(request,'carriage_state', 'right')}

${dashboard.report(request,'carriage_destination_country', 'right')}

</div>

<@h.clearFloats/>

</#if>

<#include "viewfooter.txt"/>

Dashboard Screens

© OrderFlow Ltd. 2022 Page 64

Skip to content

The parameters of the dashboard views are:

request, which is a constant parameter, required to encapsulate the data

view reference, where dashboard views essentially restrict access to certain dashboard fragments, so they are visible only to

specific roles

The parameters of the dashboard fragments are as follows:

request, which is a constant parameter, required to encapsulate the data

name of fragment, where the name is defined upon the creation of the dashboard fragment.

position, which can be: left , right or full . As the names suggest, left and right display the fragment in the

respective half of the screen and full takes up the whole width - for fragments, which require more space to be displayed.

parameters (optional), which are usually parsed in to apply filters. They follow the format name=value; , for example:

ignoreEmpty=true;maxAge=10

an optional boolean to control the exposure of helper methods available to the fragment (advanced use).

Should you need to go back to the default template of a built-in dashboard, this can be done from the Edit Screen page:

However, this is only possible for built-in dashboard screens, so make sure you have a back-up of your custom dashboard

templates before editing them - in case you want to go back to the previous version.

•

•

•

•

•

•

•

Dashboard Screens

© OrderFlow Ltd. 2022 Page 65

Skip to content

Dashboard Views

Dashboard views allow elements from within a dashboard screen to be exposed to users with different sets or roles, i.e. set

restrictions on the visibility of views or groupings of dashboard elements.

Views can easily be edited by simply clicking on one when in the Views page - to navigate there, click on the Reports tab on the

top, then Dashboards from the left-hand side menu and its submenu - Views. From there you can assign which roles have access

to that particular view.

Similarly, when creating a new view (once in the Views page, click on the New View button at the bottom of the page), other than

the view reference and description, you can set the visibility of the view to different roles simply by ticking (or unticking) the

respective box.

Dashboard Caching

For performance reasons, most dashboard fragments are cached. Caching is the mechanism of temporarily storing computed

data, so that future requests for that data can be served faster. This frees the system from having to recompute the data with

every request, which is comparatively slower and more demanding in terms of system resources.

For most dashboard fragments, users are adequately served by a display of information which may be a few seconds old, rather

than absolutely up to date in real time. However, for certain items of information it is essential to display the latest data data, so

cacheing is not required.

When refreshing a page, a cached fragment will display how old the information is in its bottom right-hand corner:

By default dashboard fragments are cached for up to 90 seconds, at which point the data is computed again. However, if

required, caching time can be changed for particular fragments by editing their to the maxAge desired amount of seconds. Also,

the data can be manually recomputed by clicking on the refresh icon.

The following age escape sequence adds the refresh link to any dashboard fragment:

<div class="${boxClass!'box'} bordered">

... //fragments

<!--[age]-->

</div>

Dashboard Views

© OrderFlow Ltd. 2022 Page 66

Skip to content
Periodic Reports

OrderFlow supports a powerful mechanism for reports to be run automatically on a scheduled basis. Reports of this kind are

known on the system as periodic reports. They are highly customisable and can be run at different intervals - either hourly, daily,

weekly or monthly.

Some examples of the kinds applications that periodic reports support include:

Automatically running end of day reports such as stock level, deliveries and orders reports. For example, 3PL can use these

reports to daily stock and order data to customers, removing the need to generate these reports manually.

Management reports on warehouse operational performance.

Automated reports to customer services on returns or stock adjustments.

Running sanity checks in the background to identify anomalies or errors and sending a follow up notifications to the support

team.

A key feature of periodic reports is their ability to be exported. Any periodic report can be set up with an arbitrary number of

exports. These exports can be done using a number of mechanisms, including to a folder on the file system, an email to a

configurable set of recipients, or a web service call to a remote system.

A periodic report definition can be configured to trigger the automatic execution of multiple reports. These reports can be both

built-in reports as well as custom or bespoke reports, described in detail in the Custom Reports chapter.

•

•

•

•

Periodic Reports

© OrderFlow Ltd. 2022 Page 67

Skip to content

Periodic Report Configuration

The starting point for setting up a periodic report is identifying an existing report, or creating a new custom report, which

provides the data required.

You can view existing periodic reports on the system by navigating to Reports -> Configurations -> Periodic. As with dashboards

and other reports, periodic reports can be created from scratch, or cloned from existing reports. You can create a new one from

scratch by clicking on New Periodic Report at the bottom of the page. Below is an example of a periodic report configuration:

Periodic Report Configuration

© OrderFlow Ltd. 2022 Page 68

Skip to content

In the next section we describe some of these fields in detail.

Reference

The name used in other parts of the application to identify the report. Must be a unique value.

Name

The human-readable name of the report. This differs from Reference in that the unique key is used by the application, whereas the

report name is designed to be helpful to users.

Description

A description of what the report does, how it is used, its frequency and/or any other pertinent notes corcerning the report.

Multi-report

If this box is ticked, then a single periodic report definition can be backed up by multiple report configurations.

Report Keys

The unique key(s) of the report(s) to be executed on a schedule. These refer to the built-in or custom reports present on the

system.

If Multi-report is unticked, the current definition backs only a single report.

Multi-Parameter Name and Multi-Parameter Values

If set, this allows the same report to be run multiple times as part of a single periodic report execution, with the individual values

set using the Multi-Parameter Values field passed through with each successive invocation.

Action

This allows the report data to be passed back into the system for further processing. The action field value identifies the

processor that is used.

You would not set a value for this field without prior knowledge of what the appropriate value would be.

Item Order

Controls the ordering of the reports run. Reports with a value set for this field are run first, in ascending order.

Frequency Type

Defines how often the report is to be executed - hourly, daily, weekly or monthly. Depending on the interval, the cutover would

contain differently formatted values.

From OrderFlow 3.8.0.5, quarter hourly periodic reports are also possible.

If using quarter hourly reports, be sure that the report execution schedule is sufficiently frequent, for example, every five

minutes.

We'd also recommend that you set the report Item Order value to ensure that quarter hour reports are run first.

A Note on Quarterly Hour Reports

Periodic Report Configuration

© OrderFlow Ltd. 2022 Page 69

Skip to content

Cutover

The point in time when the report is to be executed. The format depends on the frequency type:

quarter hourly: mm , e.g. 12

hourly: mm , e.g. 45

daily: HH:mm , e.g. 17:30

weekly: EEE HH:mm , e.g. Thu 08:55

monthly: d HH:mm , e.g. 7 12:20

where the following format notation is used:

HH - hours (0-23)

mm - minutes (00-59)

EEE - day of the week (e.g. Mon)

d - date (depending on the month, 1-28/29/30/31).

If quarter hourly reporting is used, the cutover will need to be set to a value between 0 and 14.

Activated

Determines whether the report is active, i.e. if it is to be executed on a schedule. If the box is unticked, the report can be tested

manually to see whether it produces the desired output.

Persist if Empty

Determines whether empty reports should be persisted on the system. For text, CSV and Excel based reports, empty reports

typically occur when there are no data is retrieved when generating the report.

Site-specific

Denotes whether the periodic report definition is run once across all site or warehouse, or run potentially multiple times, for each

selected site on the system. If ticked, then the definition will be run for each of the user-selected sites. Selecting no sites results

in the definition not being invoked.

Scope

Specifies whether the report is run across certain organisation(s), channel(s) or is run globally. If Organisation is selected,

periodic reports will be generated separately on a per organisation basis for selected organisations. Similarly, if Channel scope is

used, periodic reports will be generated separately per channel, for selected channels.

•

•

•

•

•

•

•

•

•

Periodic Report Configuration

© OrderFlow Ltd. 2022 Page 70

Skip to content

A Note on Underlying Reports

Note that the report that is used as an underlying report for a periodic report (as per the Report Keys field described in the

previous section) needs to observe a couple of important requirements:

if the data needs to be scoped, it should follow the reserved parameter conventions for the naming of the channel,

organisation and site scoped parameters.

it should have suitably defined date parameters to ensure that date-sensitive data is correctly filtered.

Testing a Periodic Report

Before activating a new periodic report, you can test it to check whether it produces the expected output. Note that in order to

test a periodic report configuration, it must be inactive, as described in the previous section.

Once the Activated box has been unticked, a Test configuration link will appear at the bottom of the page. Clicking on it leads to

the Test Report Configuration page, shown below.

Clicking on the Test Report Definition button at the bottom of the page will generate the report(s) for this definition. A small

information window will then display at the top right corner of the screen, describing the results of the report generation action.

Also, a Delete Existing Reports button will appear on the bottom of the page, which can be useful once the reports have been

checked and are no longer wanted on the system.

Note that it is not possible to delete reports in this way once the periodic report has been activated.

If any reports were generated, you can view them by navigating to the periodic report search from Reports -> Periodic -> Search.

From the Periodic Report detail screen, you can see all details of the generated report and download it and/or view the file

content. From this screen you can also trigger the export of the periodic report Periodic report exports are described in the next

section.

Activating a Periodic Report

In addition to checking the Activated checkbox whilst editing a periodic report definition, to ensure that a periodic report is run, a

schedule handler definition that references the generateReports handler (and, for exports, one that references the exportReports

handler) must be active. There is also a flag against every organisation and channel that controls whether schedules and periodic

reports are active, so this also needs to be enabled for the required organisation(s) and channel(s).

•

•

Periodic Report Configuration

© OrderFlow Ltd. 2022 Page 71

Skip to content

Export Configuration

A key feature of periodic reports is their ability to be exported. Multiple export configurations can be set for a single periodic

report definition. Export configurations can be set up by taking advantage of one of the remote message types enabled for

periodic reports. Setup of remote messages is not covered in in this document.

The two most common message types for periodic reports are file system and email. However, HTTP- and FTP-based message

types can also be used.

A file system export results in the output of the report into a directory on the file system, often exposed to remote users via FTP

or RSync. The target directory and file names are configurable via a Groovy script. File system report exports allow, for example,

end of day information on stock levels, orders, deliveries and other data to be made accessible to end users via a file syste based

interface.

The email message type, as the name suggests, supports export of the reports in the given format through an email to a specific

set of recipients.

Export Type

The mechanism for setting up periodic report export configurations is described next.

To add a new export configuration, from the Edit Periodic Report Configuration page, click on the New Export Configuration button

at the bottom of the screen. Unlike reports and dashboards, export configurations cannot be cloned or exported. However,

existng export configurations can be updated, and new ones can be created from scratch.

Below is an example of such a configuration:

Export Configuration

© OrderFlow Ltd. 2022 Page 72

Skip to content

The details of the periodic export configuration fields are described next.

Report

An read only text field, containing the Name of the periodic report to be exported.

Organisations/Channels

Depending on the periodic report configuration, this field can either be a list of organisations, a list of channels, depending on the

Scope of the report, described in the previous section.

If the periodic report's scope is set to Global, this field will be not be present, since the report runs across all channels and

organisations. If the scope is either Organisation, or Channel, this field will contain only the entries which are selected in the

periodic report configuration.

Message Type

The remote message type to be used for the report.

Export Threshold

Controls whether a generated report is actually exported.

Periodic reports whose result size is less than this threshold value will not be exported. A blank value or zero indicates that the

export will always occur. This field is particularly useful for reports that notify for errors; in this case, a typical configuration is to

only export the report if it has recorded at least one result.

Folder Path (Template)

A template can be used to define a folder path relative to the base directory for outputting periodic reports. If left blank, the

default folder naming convention will be used.

This field provides a relatively simple way to control the output location of file based periodic reports data. An example is shown

below which constructs a folder path based on the organisation, channel and formatted timestamp of the periodic report export.

The second example below constructs a folder path using the site reference and the periodic report ID.

The syntax for the templates is the FreeMarker template language, which is used for example in CSV-based custom reports.

This field is currently only supported for file system-based periodic report exports.

File Name (Scriptable)

Optional field that identifies the target file name and path for file-based export reports. Both the path and the file name can be

either literal, or scripted. This field is generally not required for HTTP and email based export message types.

If left blank, the default file name convention will be used, which includes the periodic report reference and the report invocation

timestamp. Otherwise, the field can be populated with either a literal (fixed) value, or a Groovy script. In both cases, the value

should return a file name, optionally prefixed with a relative path. The separator for directories is the character / .

Activated

/${organisation.externalReference}/${channel.externalReference}/${timestamp?string('yyyy-MM-dd')}

/${site.externalReference}/${periodicReport.id}

Export Configuration

© OrderFlow Ltd. 2022 Page 73

Skip to content

Indicates whether the current export configuration is enabled.

Export Configuration

© OrderFlow Ltd. 2022 Page 74

Skip to content

Exporting Periodic Reports as emails

A periodic report can be exported as email text, or as an email attachment. The email settings for a periodic report can be

configured in two ways.

System-wide settings

The OrderFlow periodic.report.customer.email properties are the default settings that will be used for all periodic reports to be

exported as emails or email attachments, unless these are overridden by report-specific settings. Setup of these properties is not

covered in this document.

Report-specific settings

These are specified on the export definition configuration. Below is an example of an export definition configuration for a periodic

report to be exported as an email attachment:

Export Configuration

© OrderFlow Ltd. 2022 Page 75

Skip to content

The details of the periodic export configuration email setting fields are described next.

Email From Address

The address to be displayed in the "From" field of the email.

Email Recipients

The addresses to be sent the email.

Email CCs

The addresses to be CC'd the email.

Email Subject (Template)

A template can be used to define the subject of the email. In the example above, the template evaluates to:

eod_orders_daily report for today.

Email Message (Template)

When a report is exported as an email, the email message text will be the contents of the report. However if the report is

exported as an email attachment, a template can be used to define the message of the email. In the example above, the template

evaluates to:

Attached is the Daily end of day orders report.

Export Configuration

© OrderFlow Ltd. 2022 Page 76

	Overview
	Custom Reports
	Custom vs Built-in Reports
	Built-in Reports
	Custom Reports

	Custom Data Reports
	Data Sources
	Parameters
	Parameter Format and Types
	Reserved Parameter Conventions
	Date Parameters
	Drop Down Parameters
	Report-backed Parameters

	Report 'Hardening'
	Design

	OrderFlow Report Administration
	Report Configuration GUI
	Importing and Exporting Reports

	Custom Report Development Phases
	Formatted Printable Reports

	Despatch Notes
	Report Design
	Styles

	Parameters and Fields
	Parameters
	Fields

	Data Providers

	Logos and Images
	Declaring Images
	Uploading Images
	Image Dimensions

	Subreports and Concatenated Reports
	Subreports
	Parameter Mappings in Subreports

	Concatenated Reports

	Package Aware Despatch Notes
	Internationlised Despatch Notes
	Report Setup
	Locale Identification
	Parameter and Field Mappings with Localised Messages

	Labels
	Label Reports
	Standalone Labels
	Process-embedded Labels

	Label Sizing and Printing
	Barcodes
	Images

	Dashboards and Views
	Dashboard Report Fragments
	Editing Existing Dashboards
	Fragment Design

	Data Providers
	SQLDataProvider
	MapResultDataProvider
	MultipleSqlDataProvider

	Macros
	A Note on Product Display
	Dashboard Screens
	Dashboard Views
	Dashboard Caching

	Periodic Reports
	Periodic Report Configuration
	A Note on Underlying Reports
	Testing a Periodic Report
	Activating a Periodic Report

	Export Configuration
	Export Type
	Exporting Periodic Reports as emails

